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a b s t r a c t

In this paper, we propose the extended Poisson distribution which unifies some well-known models
in finite queues that have been used to model congestion in vehicular, pedestrian traffic networks as
well as the Conway–Maxwell Poisson distribution (Kadane et al., 2006). The main issue is to formulate a
M/G/1 queue wherein the service distribution is the Exponential Conway–Maxwell Poisson distribution
(Cordeiro et al., 2012) which uses a new defense mechanism against long waiting time. A Bayesian
simulation study and an example with a real dataset are provided.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A major issue while developing queueing systems is to capture
in a realistic way the performance of a service center to explain
why some queues are long while others are idle. The basic
question is: How to reformulate a M/M/1 queueing system to get
a steady state, or, some defense mechanism against long waiting
time?

In this paper, we develop a new M/M/1 queueing system with
dependent service rate to answer this question in which the
number of customers in the queue is unknownbut follows aunified
probability distribution called Extended Conway–Maxwell Poisson
distribution. The proposed state distribution includes as particular
case the Conway–Maxwell Poisson [5] distribution which includes
several well-known models as special case. Moreover, the state
probability distribution is a weighted Poisson distribution. So,
it is possible to study the behavior of the queue in terms of
underdispersion and overdispersion which we believe to be new
in this area of research. Other interesting aspect of our approach
is the possibility of developing new and flexible models for the
service time with state dependent rate in which the server works
with a defense mechanism against long waiting times which
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corresponds to minimal service time among an unknown number
of parallel servers and an additional parameter that indicates how
the queueing system is affected by the state of the system. In
fact, the proposed queueing system is a M/G/1 queue in which
the customers follow a Poisson process, while the service time
follows an Exponential Conway–Maxwell Poisson distribution as
developed by [6]. This M/G/1 queue has an additional parameter,
hereafter referred to as the pressure parameter, which indicates
how the service time, waiting time and the traffic coefficient are
affected by the state of the system. This queue will be obtained by
eliminating the unknown number of customers in the likelihood
function thereby introducing a new marginal service distribution
for the M/G/1 queues, which will be referred to here as the
marginal queueing system.

The rest of this paper is organized as follows. In Section 2,
we extend the Conway–Maxwell Poisson distribution and then
present the mean and variance. In Section 3, some connections to
overdispersion and underdispersion are highlighted. In Section 4,
we describe the M/M/1 queueing system with state dependent
service rate. In Section 5, the equilibrium and waiting time
distributions of the proposed queueing system are introduced.
In Section 6, the Bayesian inference methodology is formulated
for M/ExpCMP/1 queueing system. Simulation studies from the
Bayesian point of view and an application to real data set
are then presented in Sections 7 and 8, respectively. Finally,
Section 9 presents some conclusions and suggestions for future
research.
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2. Extended Poisson distribution

The extended Poisson distribution (hereafter denoted by
ExP(θ, φ)) is a weighted Poisson distribution with reference
Poisson parameter θ and weight function w⋆(m; φ) =

m!m
i=1 w(i;φ)

,
where w(i; φ) is a positive function with w(0, φ) = 1. Its
probability mass function is given by

P[M = m; θ, φ] =
θm

m
i=0

w(i; φ)K(θ, φ)

, m = 0, 1, 2, . . . , (1)

where K(θ, φ) =


∞

m=0
θmm

i=1 w(i;φ)
. The parameter φ is an

additional quantity which explains how the Poisson distribution
is changed to obtain more realistic models. The corresponding
probability generating function (pgf) can be easily obtained as

AM(s) =
K(θs, φ)

K(θ, φ)
.

Theorem 1. The ExP(θ, φ) is overdispersed (underdispersed) if the
Poisson weight function m =⇒ w⋆(m, φ) in (1) does not depend on
θ and it is logconvex (logconcave).

Proof. The result follows readily by applying the corollary in [12].

2.1. M/G/c/c state dependent queues

The well known M/G/c/c state-dependent finite queues have
been used to model congestion in vehicular and pedestrian traffic
networks. The discrete variable M denotes the input Poisson
process, G is a general service time distribution with state
dependent mean service E(S), and c is the number of parallel
servers which also represents the total capacity of the system. The
service rate is dependent on the state of the system and some
known function f (m, φ), whereM = m is the number of customers
in the queueing system. Taking θ = λE(S) and the weight function

w(i, φ) =

if (i, φ) : i = 1, 2, . . . , c
1 : i = 0
0 : i = c, c + 1, . . . ,

(2)

we have ExP(θ, φ) to be the probability of finding m customers in
the M/G/c/c queueing system (see, [4]) given by

P[M = m] =
(λE(S))m

m!

m
i=0

f (i, φ)K(θ, φ)

, m = 0, 1, 2, . . . , c, (3)

where K(θ, φ) =
c

m=0
(λE(S))m

m!
m

i=0 f (i,φ)
.

2.2. Multiserver Queues: M/M/c

We now consider the multiserver M/M/c queueing model
in which the number of arriving customers follows a Poisson
distribution with rate λ, there are c servers, and each one has an
independent and identical exponential service-time distribution
with mean 1/µ. Let us define the weight function as

w(i) =

1 : i = 0
iµ : i = 1, 2, . . . , c − 1
cµ : i = c, c + 1, . . . .

(4)

Then, the steady-state probability is given by

P[M = m] =


λm

[K(λ, µ)]−1

m!µm
: m = 0, 1, 2, . . . , c − 1

λm
[K(λ, µ)]−1

c!µmcm−c
: m = c, c + 1, . . . ,

(5)

where

K(λ, µ) =

c−1
m=0

λm

m!µm
+

∞
m=c

λm

cm−cc!µm
.

2.3. M/M/1 queueing systemwith general state dependent service rate

The following result extends the Conway–Maxwell Poisson
(CMP) distribution proposed by [5].

Theorem 2. Given a M/M/1 queueing system with state dependent
service rate µm = w(m, φ)µ, where w(m, φ) is as defined in (1),
the probability of having m units in the system, hereafter referred
to as the Extended Conway–Maxwell Poisson distribution (in short,
ExCMP(ρ, φ)), is given by

pw(m; ρ, φ) =
w⋆(m; φ)p(m; ρ)

Eρ[w⋆(M; φ)]

=
ρm

m
i=0

w(i; φ)Kw(ρ, φ)

⇔ w(1; φ) = 1, (6)

where the Poisson weight function is

w⋆(m; φ) =
m!

m
i=0

w(i; φ)

, (7)

p(m, ρ) =
ρme−ρ

m!
, m = 0, 1, . . . , (8)

Kw(ρ, φ) =

∞
m=0

ρm

m
i=0

w(i; φ)

. (9)

Proof. The proof is similar to that of [5] by takingµm = w(m, φ)µ.

Remark 1. Note that the ExCMP(ρ, φ) is an Extended Poisson
distribution if we take θ = ρ.

Remark 2. Some special cases of the Extended Conway–Maxwell
Poisson distributions are as follows:
• Conway–Maxwell Poisson distribution with parameters ρ and

φ [5]: w(m, φ) = mφ,m ≥ 1 and w(0, φ) = 1 (denoted by
M ∼ CMP(ρ, φ));

• Poisson distribution with parameter ρ : w(m, φ) = m, m ≥ 1
and w(0, φ) = 1;

• Geometric distribution with parameter 1 − ρ: For w(m, φ) =

1, m ≥ 0, we return to the classicalM/M/1 queueing system;
• Bardwell–Crow distribution, or, the hyper-Poisson distribu-

tion [3], hP(µ, ρ), given by

P[M = m; µ, ρ] =
1

1F1(1, µ, ρ)

ρm

(µ)m
, m = 0, 1, 2, . . . ,

(10)

where (µ)m = µ(µ+1)(µ+2) . . . (µ+m−1), m ≥ 1, (µ)0 =

1, ρ =
λ
µ
and

1F1(1, µ, ρ) =

∞
m=0

ρm

(µ)m
(11)

is the confluent hypergeometric series [10]. The hP(µ, ρ) is the
ExCMP(ρ, µ) if we take

w(i, µ) =


µ + i − 1 : i ≥ 2

1 : i = 1
1 : i = 0.

(12)
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