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In response-guided dosing (RGD), doses are adapted to the uncertain progression of each patient’s
disease condition. A stochastic dynamic program was recently developed for RGD. We study its robust
counterpart, where the dose-response distribution belongs to an uncertainty set. For interval uncertainty
sets, we prove that it is optimal to administer higher doses in worsening disease. When a certain scaling of
anominal distribution describes the interval, optimal doses also increase in the scaling parameter. Theory
is illustrated via numerical results.
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1. Background and motivation

Many diseases are treated with therapeutic drugs over multi-
ple sessions where dosing guidelines follow a one-size-fits-all phi-
losophy. For instance, a daily radiation dose of 2 Gy for 35 days
is recommended for head-and-neck cancer [7], and a weekly dose
of 180 g interferon for 48 weeks is prescribed for hepatitis C [9].
While such guidelines are easy to implement, their potential draw-
backs include inadequate disease control, over- and under-dosing,
and unsatisfactory cost-effectiveness [4]. Response-guided dosing
(RGD) is an alternative paradigm, where doses are adapted to the
observed uncertain evolution of a patient’s disease condition. RGD
attempts to balance a fundamental trade-off in medicine — higher
doses achieve better disease-control at the cost of undesirable side-
effects, whereas lower doses sacrifice disease-control in favor of
lesser adverse effects.

Most clinical implementations of RGD are, however, somewhat
ad hoc. Indeed, Murphy et al. [8] have commented: “despite the
activity in evaluating adaptive treatment strategies, the development
of data collection and analytic methods that directly inform the
construction of adaptive treatment strategies lags behind.” To address
this concern, a stochastic dynamic programming (DP) framework
for choosing doses in RGD was recently proposed by our research
group in Kotas and Ghate [6]. The idea there was to balance the
total disutility of doses delivered over the treatment course against
the disease condition reached by the end of the treatment course.
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The evolution of this disease condition was characterized using a
stochastic dose-response model — a formula that yields the next
disease condition as a function of the current disease condition
and of the dose used in the current treatment session, subject
to uncertainty in a dose-response parameter. Kotas and Ghate
proved, under natural convexity and monotonicity assumptions on
this formula and on the disutility functions, that optimal doses are
increasing in worsening disease conditions.

One limitation of this stochastic DP is that the decision-maker is
assumed to know at the outset the probability mass function (pmf)
of the dose-response parameter. Any a priori estimate of this pmf,
however, is subject to estimation errors. To tackle the resulting
ambiguity, we present here a robust counterpart of the Kotas and
Ghate model (henceforth called the “nominal” model).

In our robust formulation, the pmf of the dose-response
parameter will be assumed to belong to an uncertainty set.
Uncertainty sets are often composed of pmfs that are in some sense
“close to” a nominal pmf, which may have been estimated a priori
from a clinical trial [1,5,10]. Roughly speaking, the decision-maker
then follows a conservative approach whereby he/she attempts
to find a dosing policy that minimizes the worst-case expected
disutility over all pmfs from this uncertainty set. Examples of
uncertainty sets include the interval set, the maximum likelihood
set, the relative entropy set, and the ellipsoidal set. Although our
general robust RGD model accommodates any of these sets, we
illustrate our results in detail using the interval model. We show
that the so-called inner maximization problem in the Bellman’s
equations for robust RGD with the interval uncertainty set is a
linear program (LP) that can be solved analytically. Moreover,
an optimal solution to this inner problem, that is, the worst-
case pmf, does not depend on the observed disease condition
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and the dose chosen. This in turn implies that there exists a
monotone dosing policy that is optimal to the robust stochastic
DP, thus extending the main theoretical result from the nominal
model of Kotas and Ghate (see Section 3). This extension is not
only of theoretical interest but also significantly simplifies the
computation of our robust optimal dosing policy. In particular, we
show that the state-action invariant structure of the worst-case
pmf makes the robust problem only as hard to solve as the nominal
problem. We further analyze in Section 4 a specific and common
single-parameter formulation of the interval uncertainty set and
provide a simple condition on the dose-response formula under
which optimal doses vary monotonically with this parameter. We
conclude by presenting numerical results on a hypothetical disease
with an inverse-power dose-response function.

2. Review of the nominal model

Let T denote the number of sessions, indexed by t =
1,2, ..., T,inatreatment course. At the beginning of each session,
the decision-maker observes a numerical score of the patient’s dis-
ease condition, and chooses a dose for that session. These numeri-
cal scores belong to a compact interval X C R. Smaller numbers in
this set represent less severe disease. The disease condition at the
beginning of session t is denoted by x; € X. The dose level chosen
by the decision-maker for this session after observing x; is denoted
by d;. Dose levels d; belong to the interval D £ [0, d] C R, where
d is a finite upper bound on permissible dose levels.

Fort = 1,2,...,T, disease conditions evolve according to
dynamics x;r1 = X + f(ds; ©), for x;, %41 € X and d, € D.
All standard dose-response functions such as linear, Michaelis-
Menten, inverse-power, Emax, Hill's, exponential, exponential
linear-quadratic, power law, Gompertz, and Beta-Poisson can be
expressed in this form (after taking logarithms in some cases).
Please see Kotas and Ghate and references therein for detailed
descriptions of these functions. Here, ®; are independent and
identically distributed dose-response parameters in sessions t.
Independence across sessions is somewhat restrictive although
common in the literature (see, for example, Chapter 4 of [3], and
also [11]). Kotas and Ghate employed this assumption in their
nominal model as well, and it holds when consecutive sessions
are “sufficiently separated” from a biochemical viewpoint. Random
variables ©, take values from a finite set 2 £ {6,,0,,...,0,}.
Their pmf, denoted by p(-), is known to the decision-maker. We
assume that the function f(-; #) is continuous over D for each
0 € £2.

Aversion to dose is modeled using a continuous disutility
function c : D — R,. Since D is compact, continuity of c(-)
implies that it is bounded. Examples include linear, quadratic, and
exponential functions. Aversion to disease conditions xr; at the
end of the treatment course is modeled using a continuous and
bounded disutility function h : X — R . Examples include linear,
quadratic, exponential, and ramp (where the disutility is zero up
to a disease-condition threshold and grows linearly thereafter).

Let J;(x;) denote the minimum total expected disutility
accumulated by the end of the treatment course, given that the
disease condition at the beginning of the tth session is x;. These
optimal cost-to-go functions J; (-) are unique solutions of Bellman'’s
equations

o) = minfe(d) + Y e (ke + (e 0)p(0) .

fef2
Vx; €eX,andt=1,2,...,T, (1)
with the boundary condition Jr;1(x) = h(x) for all x € X.

Problem (1) involves optimizing a continuous function over the
nonempty compact set D and hence it has an optimal solution.

Doses that attain the above minima define an optimal RGD
policy. Bellman’s equations (1) can easily be solved approximately
using discretization of X and D. As such, the nominal problem
is computationally tractable. Moreover, it is shown in Kotas
and Ghate, under two assumptions (stated below) on the
dose-response function and on the disutility functions, that in each
treatment session there exist optimal doses that increase as the
disease condition worsens.

Assumption 2.1 (Monotone and Convex Dose-Response). The func-
tion f(-; 0) is decreasing and convex in dose over D for every
0 € L.

Assumption 2.2 (Increasing and Convex Disutilities). The disutility
function c(-) is increasing and convex over D; the disutility
function h(-) is increasing and convex over X.

A detailed justification for these assumptions was provided by
Kotas and Ghate. In particular, Assumption 2.2 encodes a risk-
averse decision-maker. Several examples of clinically relevant
functions that satisfy these assumptions were also listed by Kotas
and Ghate; as such, we do not believe these assumptions to be
particularly restrictive.

Theorem 2.3 (Theorem 5.3 in Kotas and Ghate). Under the above
assumptions, optimal dose levels increase with worsening disease
conditions in each treatment session.

3. The robust stochastic DP

As opposed to the nominal problem, we now consider the case
where the pmf of the dose-response parameter is not known to the
decision-maker. Pursuing standard practice in robust stochastic DP
[1,5,10], we assume that the pmf of ®; is only known to lie in
some set &. In the robust optimization parlance, set & is called
the uncertainty set and is composed of all “plausible” pmfs. This
set is often chosen so that it includes all pmfs that are “close to”
some nominal pmf. More precisely, let A 2 {p() p) >
0, > 4cop(@) = 1} be the probability simplex in R", and let
& C A.Then, the worst-case total expected disutility is minimized
by solving the robust Bellman'’s equations

“inner problem”

Je@x) = min{ max (C(dt) + Z][+1(Xt + f(de; 9))Pt(9)) },

. P
deeD | pt(-)eF besr

Vx, € X, andt =1,2,...,T, (2)

with the boundary condition ]T+1(x) = h(x) for all x € X. Here,
jt(-), fort =1,2,...,T+ 1, are called the robust optimal cost-to-
go functions, and an optimal solution to the inner problem is called
a worst-case distribution.

The robust stochastic DP is computationally tractable if the in-
ner maximization problem is easy to solve. This occurs, for exam-
ple, when & is chosen to be a convex set. This, combined with the
linearity (in p;(-)) of the objective function, implies that the inner
problem is convex. Some examples of convex uncertainty sets are
interval, maximum likelihood, ellipsoidal and entropy [1,5,10]. We
focus on the interval uncertainty model in the subsequent discus-
sion.

The interval model is motivated by statistical estimates of
confidence intervals on the pmf components. It can also be
obtained by projecting the ellipsoidal or maximum likelihood
uncertainty sets onto the coordinate axes [1,10]. In this model [1],
the uncertainty set & is defined such that the probabilities p(9),
for 6 € £2, belong to an interval. More precisely, # = {p(@) €

A p(@) < p@O) < pH(O)}, for some constants p;(0) and
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