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1. Introduction

The proximal point algorithm, first introduced by Martinet [ 18]
for convex minimization and further generalized by Rockafellar
[26] to get todays version, is one of basic methods for maximal
monotone operators, variational inequalities and minimization
problems and so on (see, for example, [26,5,4,33,14,11,13,28,
30,31]). The proximal point algorithm has many interesting
applications such as signal recovery and others [7,6].

Let us emphasize that the estimate of convergence rate is of fun-
damental importance in the study of proximal point algorithms. In
the case when the space is linear, there are some results about the
estimate of convergence rate concerned with the proximal point
methods. In a seminal work [26], under the assumption that the in-
verse operator A~ ! is Lipschitz continuous at 0, Rockafellar proved
that the proximal point algorithm is linearly convergent. In 1999,
Solodov and Svaiter [30,31] obtained the same results for a hybrid
extragradient-proximal point algorithm and a hybrid projection-
proximal algorithm under similar assumptions. We would like to
mention that the Lipschitz continuity of the inverse operator A~!
around 0 implies that the solution of the variational inclusion prob-
lem is unique. Hence, the requirement is rather strong. In order to
overcome this drawback, Luque [17] introduced a weaker growth
condition to ensure the superlinear convergence. The significance
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of Luque’s work lies in that it does not require the Lipschitz con-
tinuity of the inverse operator A~ around 0. For example, when
this mapping is polyhedral, the growth condition holds naturally
whereas the Lipschitz continuity condition fails. For more infor-
mation, one also can refer to the work of Dong [11].

Since a seminal work of Rockafellar [26], the proximal point al-
gorithm has been extensively studied in linear spaces (R"/Hilbert
spaces/Banach spaces) by many researchers (see, for exam-
ple, [15,7,6,26,30,31]). Recently, some authors focus on extend-
ing proximal methods from Euclidean spaces to Riemannian/
Hadamard manifolds (see, for example, [1-3,10,12,15,16,25,24,
23,34,35] and the references therein). Very recently, Tang and
Huang [32] extended an inexact proximal point algorithm with the
relative error tolerance proposed by Han and He [13] from the Eu-
clidean spaces to the Hadamard manifolds. Under some suitable
assumptions, they proved that the sequence generated by the pro-
posed method converges to the singularity of maximal monotone
vector fields on Hadamard manifolds. However, to the best of our
knowledge, we cannot find any work about the estimate of con-
vergence rate of proximal point algorithms on Riemannian man-
ifolds other than linear spaces. From the point of view of theory
and applications, we look forward to obtain some related results
concerned with the estimate of convergence rate on Riemannian
manifolds or Hadamard manifolds. On the other hand, unlike in the
case of Euclidean spaces (or Hilbert spaces), the loss of linear struc-
ture in the case of Riemannian manifolds or Hadamard manifolds
makes the task more complicated. Therefore, it is interesting and
important to explore the convergence rate results for the inexact
proximal point algorithms on Riemannian/Hadamard manifolds.


http://dx.doi.org/10.1016/j.orl.2014.06.009
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2014.06.009&domain=pdf
mailto:nanjinghuang@hotmail.com
mailto:njhuang@scu.edu.cn
http://dx.doi.org/10.1016/j.orl.2014.06.009

384 G.-j. Tang, N.-j. Huang / Operations Research Letters 42 (2014) 383-387

In this paper, we will explore the convergence rate of the prox-
imal point algorithm on Hadamard manifolds. Under a weaker
growth condition, we prove that the inexact proximal point al-
gorithm proposed in Tang and Huang [32] admits the superlin-
ear convergence on Hadamard manifolds. The main results of the
present paper also provide the estimate of convergence rate for
some existing proximal point algorithms on Hadamard manifolds
(see, for example, [15,12]) besides the inexact proximal point algo-
rithm of [32].

2. Preliminaries

In this section, we recall some fundamental definitions, prop-
erties and notations concerned with the Riemannian manifolds,
which can be found in any textbook on Riemannian geometry, for
example, [27].

Let M be a connected m—dimensional manifold and let x € M.
We always assume that M can be endowed with a Riemannian
metric to become a Riemannian manifold. The tangent space of
M at x is denoted by T,M. We denote by (-, -) the scalar product
on TyM with the associated norm || - ||x, where the subscript x is
sometimes omitted. The tangent bundle of M is denoted by TM =
Uxem TxM, which is naturally a manifold. Given a piecewise smooth
curve y : [a, b] — M joining x to y (i.e. y(a) = x and y (b) = y),
we can define the length of y by I(y) = jab [ly'(t)||dt. Then the
Riemannian distance d(x, y), which induces the original topology
on M, is defined by minimizing this length over the set of all such
curves joining x to y.

Let V be a Levi-Civita connection associated with the Rieman-
nian metric. Let y be a smooth curve in M. A vector field X is said
to be parallel along y iff V,,X = 0.If i’ itself is parallel along y,
we say that y is a geodesic (this notion is different from the corre-
sponding one in the calculus of variations), and in this case ||y’| is
a constant. When ||y’|| = 1, y is said to be normalized. A geodesic
joining x to y in M is said to be minimal if its length equals d(x, y).

A Riemannian manifold is complete if, for any x € M, all geo-
desics emanating from x are defined for all —co < t < 4o00. By
the Hopf-Rinow Theorem, we know that, if M is complete, then any
pair of points in M can be joined by a minimal geodesic. Moreover,
(M, d) is a complete metric space and any bounded closed subsets
are compact.

Assuming that M is complete, the exponential map exp, : T,M
— M at x is defined by exp, v = y, (1, x) for each v € T,M, where
y(-) = Y, (-, x) is the geodesic starting at x with velocity v. Then
exp, tv = y,(t, x) for each real number t. Note that, the mapping
exp, is differentiable on TyM for any x € M.

A complete, simply connected Riemannian manifold of nonpos-
itive sectional curvature is called an Hadamard manifold. Through-
out the remainder of this paper, we will always assume that M is
an m-dimensional Hadamard manifold.

Let X (M) denote the set of all multivalued vector fields A : M
— 2™ such that A(x) € TyM for each x € M and the domain D (A)
of A is closed and convex, where the domain £ (A) of A is defined
by

DA) = {x e M : Ax) # 0}.

The notions of monotonicity in the following definition were
given and studied extensively in [8,9,15,19-21], which are exten-
sions of the corresponding ones in the Euclidean spaces. In partic-
ular, concepts (i) and (ii) were introduced and studied in [21] for
the single-valued case and in [8] for the multivalued case.

Definition 2.1. Let A € X (M) be a vector field. Then A is said to be

(i) monotone iff the following condition holds for any x,y €
D(A),

(u,exp,'y) < (v, —exp,'x), VueA(x)andVv € A(y);

(ii) maximal monotone iff it is monotone and the following impli-
cation holds for any x € D (A) and u € T,M:

(u, exp;'y) < (v, —exp,'x), Vye D(A)and
v eAly) = uecA®X).

3. Convergence rate of an inexact proximal point algorithm

We first recall the inexact proximal point algorithm proposed
by Tang and Huang [32] for singularities of maximal monotone vec-
tor fields on Hadamard manifolds. Let A : M — 2™ be a maximal
monotone vector field such that A(x) € T,M for eachx € M. A
point x € M is said to be a singularity of the maximal monotone
vector field Aif 0 € A(x). We denote the set of all singularities of
the maximal monotone vector field A by Z, thatis,Z = {x € M :
0 €A}

Algorithm 3.1. Initialization: choose an initial point xX° € D(A).
Set k = 0 and let {c,} C [c, +0o0) be a sequence of scalars with
c>0.

Iterative step: at stage k, given x¥, compute x**! such that

ek+1 k-+1

-1k
€ GAKX™) — EXPyk+1 X (3.1)
where e*t! is regarded as an error term and conforms to the fol-

lowing condition:

o0
1) < md (!, ) with Y < oo (3.2)
k=0

The following lemmas and theorem are taken from [32] which

are useful for the discussion of the estimation of convergence rate
concerned with the proposed algorithm.

Lemma 3.1. Let {x*} and {e*} be sequences that conform to recur-
sion (3.1). Then for any x* € Z and all k > 0 we have

(e 4 exp XX, expl, x*) <0 (3.3)
and
dZ(Xk+1’ X*) S d2 (Xk, x*) _ dZ(X/<+1’ Xk)

+2(ef1, — exp);(l+1 x*). (3.4)

Lemma 3.2. Let {x} and {e*} be sequences generated by Algo-
rithm 3.1. Then there exists an integer ko > 0 such that, for all k > ko,
277,%
1-27;

1
P x) < (1 + ) @ (X — ST, (35)
where x* is any singularity of the vector field A. Furthermore, {x*} is a
bounded sequence and

lim dx*', %% = 0. (3.6)

k— o0

Theorem 3.1. Let A be a maximal monotone vector field on M, and
{xX} and {e*} be sequences generated by Algorithm 3.1. Then {x}
converges to some x*° with 0 € A(x*).

For the convenience of readers, we shall recall some concepts
about the convergence rate and the parallel transport on the tan-
gent bundle TM.

Definition 3.1. Let {x*} be a sequence converging to x*. The con-
vergence is said to be:

(i) at least linear iff there exist a constant & < 1 and a positive N
such that

dx*1 x%) < 0d(x*, x*), Vk > N:
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