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a b s t r a c t

Fluidmodels, in particular their equilibrium states, have become an important tool for the study of many-
server queueswith general service and patience time distributions. However, it remains an open question
whether the solution to a fluid model converges to the equilibrium state and under what condition.
We show in this paper that the convergence holds under some conditions. Our method builds on the
framework of measure-valued processes, which keeps track of the remaining patience and service times.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we analyze the asymptotic behavior of fluid mod-
els for many-server queues with abandonment. We allow both the
service time and patience time distributions to be general. To the
best of our knowledge, Whitt [10] is the earliest to propose a fluid
model for many-server queues with generally distributed service
andpatience times. In [10], the equilibriumstate for a fluidmodel is
characterized and extensive simulations show that the equilibrium
state of the fluid model yields reasonably good approximations to
the original stochastic system in steady state.

The challenge in studyingmany-server queues, especiallywhen
the service time is generally distributed, is that the status of the
server pool plays an important role in the dynamics. However, de-
scribing the status itself is quite complicated. There have been two
streams of work providing different modeling approaches. Kang
and Ramanan [5], which is based on [6] for many-server queues
without abandonment, modeled the status of the server pool by
keeping track of the ‘‘age’’ (the amount of time a customer has
been in service). Alternatively, Zhang [11]modeled the status of the
server pool by tracking each customer’s ‘‘residual’’ (the remaining
service time). The fluidmodel proposed in [5] is too complicated to
be analyzed. Even the existence and uniqueness of the fluid model
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solution is proved using heavy traffic approximation. This paper
thus builds on the second approach instead.

Both [5,11] established the fluid model as the limit of fluid-
scaled stochastic processes underlying many-server queues. How-
ever, the analysis of the fluid model itself remains open. [10,5,11]
have all been unable to show that the fluid model converges to
the equilibrium states. Such a convergence was proved in [9] for
a many-server fluid model with exponentially distributed service
and patience times. Taking advantage of the exponential distribu-
tion, the fluid model reduces to a one-dimensional ordinary dif-
ferential equation (ODE). In general, proving convergence to the
equilibrium states for fluid models is intrinsically difficult, even
though the fluid models are just deterministic dynamic systems.

The current work can be viewed as a sequel to [11]. We use the
same definition for the fluid model, and even the same set of nota-
tions for easy connection. The modeling is close to that in [12] but
themethod is significantly different due to customer abandonment
(which does not appear in [12]) and intrinsic difficulties in many-
server models. [7] offered a nice treatment for the fluid model of
the many-server queue without abandonment. Though the main
focus of that paper is not the fluid analysis, the elegant treatment of
the fluid model helps to relax the assumption on initial customers
made in [8]. Abandonment, especially with a general patience time
distribution, imposes significant challenges. A virtual buffer, which
holds all the customers who have arrived but not yet scheduled
to receive service according to the FCFS policy, is constructed to
study abandonment in [11]. The idea is to keep some abandoned
customers in the virtual buffer for tracking purposes. This paper
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adopts the same idea. Our fluid model can be shown to be equiv-
alent to the one in [7] when patience time becomes infinite (no
abandonment).

We hope the analytical tools we develop in this paper can pave
the way for studying more complicated many-server models such
as the multi-class V-model studied in [1], and models where ser-
vice and patience times are dependent in [2].

2. Fluid models of many-server queues

Let R denote the set of real numbers and R+ = [0, ∞). For
a, b ∈ R, write a+ for the positive part of a and a ∧ b for the min-
imum. Denote Cx = (x, ∞) and F c(x) = 1 − F(x) for any distribu-
tion function. At time t , let R̄(t)(Cx) denote the amount of fluid in
the virtual buffer with remaining patience time larger than x. Since
the virtual buffer also holds abandoned customers who have neg-
ative remaining patience times, the testing parameter x is allowed
to be both positive and negative for the measure R̄(t). Introduce
R̄(t) = R̄(t)(R), the total fluid content in the virtual buffer. Denote
by λ the arrival rate. So at time t , the earliest arrived fluid content
in the virtual buffer arrives at time t−R̄(t)/λ. To find out the status
of the virtual buffer at time t , we take integral from t − R̄(t)/λ to
t . If an infinitesimal amount of fluid content λds arrives at time s,
only a fraction F c(x+ t−s) of it has remaining patience time larger
than x at time t since t − s amount of time has been spent waiting
in queue. This yields Eq. (2.2). Let Z̄(t)(Cx) denote the amount of
fluid in the server pool with remaining service time larger than x
at time t . Unlike the virtual buffer, a customer leaves the system
once his remaining service time hits 0. So we restrict the testing
parameter x ∈ R+ for the measure Z̄(t). Let

B̄(t) = λt − R̄(t). (2.1)

Thephysical intuition for B̄ is that B̄(t)−B̄(s) represents the amount
of fluid in the virtual buffer that could have entered service during
time interval (s, t]. It should be pointed out that not all of it will
actually enter the server pool. At time s, an infinitesimal amount
dB̄(s) is scheduled to enter service afterwaiting in the virtual buffer
for R̄(s)/λ. Thus, a fraction F


R̄(s)
λ


has actually abandoned queue

by time s. Only the rest makes it to the service. This contributes to
the term F c


R̄(s)
λ


in (2.3). The following fluid dynamic equations

characterize how the fluid content (R̄(t), Z̄(t)) evolves over time.
For all t ≥ 0,

R̄(t)(Cx) = λ

 t

t− R̄(t)
λ

F c(x + t − s)ds, x ∈ R, (2.2)

Z̄(t)(Cx) = Z̄(0)(Cx+t) +

 t

0
F c


R̄(s)
λ


Gc(x + t − s)dB̄(s),

x ∈ R+. (2.3)

Introduce Z̄(t) = Z̄(t)(C0), the fluid content in service; and Q̄ (t) =

R̄(t)(C0), the fluid queue length. Let Z̄(t) + Q̄ (t) = X̄(t) denote
the total amount of fluid in the physical system. The following non-
idling constraints must be valid at any time t ≥ 0,

Q̄ (t) = (X̄(t) − 1)+, (2.4)

Z̄(t) = X̄(t) ∧ 1. (2.5)
Let (λ, F ,G) denote the fluid model defined by (2.2)–(2.5).

The initial state (R̄(0), Z̄(0)) is said to be valid if it satisfies
Eqs. (2.2)–(2.5) at time t = 0. Throughout this paper, we make
the following assumptions.

Assumption 1. Assume the service time distribution G is abso-
lutely continuouswith finitemean 1/µ; and the patience time dis-
tribution F is Lipschitz continuous.

According to Theorem 3.1 in [11], under Assumption 1, there
exists a unique solution to the fluid model (λ, F ,G) for any valid
initial state (R̄(0), Z̄(0)). Theorem 3.3 in [11] shows that the
fluid model solution serves as the fluid limit of the many-server
queueing models.

3. Convergence to equilibrium states

A key property of the fluid model is that it has an equilibrium
state. An equilibrium state is defined intuitively as the state from
which the fluid model solution starts and remains. More precisely,
(R̄∞, Z̄∞) is an equilibrium state of the fluid model (λ, F ,G) if
the solution to the fluid model with a valid initial state (R̄∞, Z̄∞)
satisfies (R̄(t), Z̄(t)) = (R̄∞, Z̄∞) for all t ≥ 0. As characterized
in Theorem 3.2 in [11], the state (R̄∞, Z̄∞) is an equilibrium state
of the fluid model (λ, F ,G) if and only if it satisfies

R̄∞(Cx) = λ

 ω

0
F c(x + s)ds, x ∈ R, (3.1)

Z̄∞(Cx) = min (ρ, 1) [1 − Ge(x)], x ∈ R+, (3.2)

where ρ = λ/µ is the traffic intensity, ω is the unique solution to

F(ω) = max


ρ − 1
ρ

, 0


, (3.3)

and Ge(·), called the equilibrium distribution associated with G, is
defined by

Ge(x) = µ

 x

0
Gc(y)dy, for all x ≥ 0. (3.4)

Note that we need to assume (3.3) has a unique solution (see
Remark 1 for detailed discussion). The objective is to show

lim
t→∞


R̄(t), Z̄(t)


=


R̄∞, Z̄∞


. (3.5)

Underloaded case. In this case, we can prove the convergence under
a fairly general condition.We only require the initial state to satisfy

lim
x→∞

Z̄(0)(Cx) = 0, (3.6)

which is quite mild. We do not even require the initial remaining
workload in the server pool


∞

0 Z̄(0)(Cx)dx to be finite.

Theorem 1. Under Assumption 1 and suppose λ < µ, if the initial
state satisfies (3.6), then the convergence (3.5) holds.

Critically loaded and overloaded cases. The study in these two cases
turns out to bemore challenging.We cannot prove that the conver-
gence holds in generality. If the initial state is controlled by (3.7),
we can prove the convergence without assuming additional con-
ditions on service and patience time distributions. This condition
covers the cases where the system starts from empty or initial cus-
tomers’ service times follow the equilibrium distribution.

Theorem 2. Under Assumption 1 and suppose λ ≥ µ, if there is a
unique solution to (3.3), the initial state satisfies (3.6) and

Z̄(0)′((0, t]) :=
d
dt

Z̄(0)((0, t]) ≤ λGc(t), (3.7)

then the convergence (3.5) holds.

4. Preliminary analysis

Introduce two new functions Fd(x) =
 x
0 F c(y)dy and

H(x) =


F c


F−1
d

 x
λ


, if 0 ≤ x < λNF ,

0, if x ≥ λNF ,
(4.1)
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