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a b s t r a c t

Resource allocation problems are usually solved with specialized methods exploiting their general
sparsity and problem-specific algebraic structure. We show that the sparsity structure alone yields a
closed-form Newton search direction for the generic primal-dual interior point method. Computational
tests show that the interior point method consistently outperforms the best specialized methods when
no additional algebraic structure is available.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider the resource allocation problem in the form

minimize f (x) :=

n
i=1

fi(xi) over all x (1)

subject to g(x) :=

n
i=1

gi(xi) ≤ b, (2)

l ≤ x ≤ u. (3)

Here x, l, and u are n-vectors of real numbers, b is a real scalar,
and the functions fi and gi are convex and twice differentiable on
an open set containing the interval [li, ui]. Inequalities of vectors
are interpreted coordinate-wise.We shall also consider the related
problem in which (2) is replaced with a linear equality constraint.

The recent survey paper of Patriksson [8] shows that such prob-
lems have a long history and diverse applications. The contexts in
which the problem appears often demand that it be solved very
quickly, even in high dimensions. Consequently, researchers long
ago moved beyond general-purpose nonlinear programming pro-
cedures and focused on exploiting the special structure of the op-
timality conditions for the problem. As noted by Patriksson, two
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frameworks have emerged as the most competitive for solving
resource allocation problems: the pegging or variable-fixing meth-
ods and the breakpoint-search methods. Patriksson also observes
that computational studies in the literature have generally indi-
cated that pegging is superior to breakpoint search when certain
subproblems (see Section 2) common to both methods are easily
solved, whereas breakpoint search is faster otherwise. Moreover,
numerical comparisons of either method with general-purpose
solvers are essentially nonexistent in the literature.

Here we present evidence that a primal-dual interior point
method outperforms breakpoint search on problems for which the
latter is traditionally considered the best possible choice, namely,
when its subproblems do not admit closed-form solutions and
must be solved numerically. We show that the special structure
of (1)–(3) allows for a closed-form solution of the linear system
defining the search directions and we present computational
results showing the method’s superiority. This addresses two
questions posed by Patriksson [8]. First, it shows that the sparsity
can be exploitedwithin the setting of a general-purpose optimizer.
Second, it provides an efficient method that also avoids the usual
assumptions (see Section 2) imposed by pegging or breakpoint
search methods on the domain, monotonicity or strict convexity
of fi and gi.

In the next section, we review the optimality conditions for
(1)–(3). In Section 3we describe the breakpoint search and interior
point methods, along with details of their implementation. Sec-
tion 4 lays out the problem instances used for the computational
tests, and the results are discussed in Section 5.
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2. Optimality conditions

In this study we make the following assumptions:

(A1) The problem (1)–(3) has no optimum with g(x) < b.
(A2) The function fi is decreasing on [li, ui] and gi is increasing on

[li, ui] with g(l) < b < g(u).

The randomly generated test instances of Section 4 all satisfy
these assumptions, which are needed for breakpoint search but
not for the interior point method. In practice, we can easily deter-
mine whether either assumption holds if we know the intervals
of monotonicity for each fi and gi. Indeed, many treatments of re-
source allocation problems include one or both of these assump-
tions because they can be inexpensively enforced through some
combination of initialization, preprocessing, and data generation.

Assumptions A1–A2 imply that the problem (1)–(3) admits an
optimal solution, that the Slater constraint qualification holds, and
that problem (1)–(3) is equivalent to the problem in which the
inequality constraint (2) is forced to hold as equality. For similar
reasons, our discussion also covers the related problem where the
inequality (2) is replaced by a linear equality (in which case we
still assume, for simplicity, that the preprocessing has ensured that
A1–A2 hold).

By Lagrangian duality, necessary and sufficient optimality
conditions can be expressed as follows: g(x) = b and, for some real
numberρ, x is a solution to the separable optimization subproblem

minimize f (x) + ρg(x) subject to l ≤ x ≤ u. (4)

The dual objective is

ρ → −bρ +

n
i=1

min
xi∈[li,ui]

[fi(xi) + ρgi(xi)], (5)

which attains its maximum; moreover, any maximizer ρ is neces-
sarily nonnegative. The subproblem (4) has coordinate-wise opti-
mality conditions given by

f ′

i (xi) + ρg ′

i (xi) = 0, if li < xi < ui,

f ′

i (xi) + ρg ′

i (xi) ≥ 0, if xi = li,

f ′

i (xi) + ρg ′

i (xi) ≤ 0, if xi = ui.

The left-hand sides give the Karush–Kuhn–Tucker multipliers for
the bounds li ≤ xi and xi ≤ ui, respectively, as

λi := max{0, −[f ′

i (xi) + ρg ′

i (xi)]},
µi := max{0, f ′

i (xi) + ρg ′

i (xi)}.

Letting s := u − x denote the vector of slack variables for the up-
per bounds on x, we express the Karush–Kuhn–Tucker (KKT) con-
ditions for (1)–(3) as

∇f (x) + ρ∇g(x) − λ + µ = 0, (6)
x + s = u, (7)
x ≥ l, λ ≥ 0, s ≥ 0, µ ≥ 0, (8)
diag(x − l)λ = 0, diag(s)µ = 0, (9)
g(x) = b. (10)

Here diag(z) denotes the diagonal matrix whose diagonal entries
are the entries of the vector z.

The three solution frameworks discussed in Section 1 utilize the
optimality conditions in different ways:

• Peggingmethods solve subproblems of the form (1)–(2), but for
which some variables are held fixed while the bounds (3) for all
remaining variables are omitted.

• Breakpoint search methods maximize the dual objective (5) by
solving a sequence of subproblems of the form (4) at various
values of ρ.

• Primal-dual interior point methods apply Newton’s method to
perturbations of the KKT system (6)–(10).

The pegging and breakpoint search methods both benefit consid-
erably when minimization of xi → fi(xi) + ρgi(xi) can be handled
efficiently. Because we focus on problems for which breakpoint
search dominates pegging, we do not include pegging methods in
this study. In fact, the pegging approach is not even well-defined
for some of the problems we consider, because the pegging sub-
problems do not admit optimal solutions.

3. Methods and implementation

In this section, we describe the two main approaches consid-
ered in our computational study.

3.1. Breakpoint search

Breakpoint search is based on the observation that the dual ob-
jective (5) is concave and defined piecewise with a finite number
of easily calculated breakpoints. The derivative, or subdifferential,
of this objective is nonincreasing. A binary search of the break-
points therefore identifies either one that is a root or a pair that
most closely brackets a root.

There are at most 2n breakpoints, occurring at ρ-values where
some xi → fi(xi) + ρgi(xi) attains its minimum over [li, ui] at an
endpoint li or ui. Equivalently, a breakpoint makes the derivative
xi → f ′

i (xi) + ρg ′

i (xi) nonnegative at li or nonpositive at ui.
Consequently, all breakpoints have the form ρ+

i := −f ′

i (li)/g
′

i (li)
or ρ−

i := −f ′

i (ui)/g ′

i (ui). The monotonicity of fi and gi allow us to
define ρ+

i = ∞ when g ′

i (li) = 0 and to guarantee that g ′

i (ui) > 0
in the definition of ρ−

i . The convexity and monotonicity of fi and gi
also guarantee that 0 ≤ ρ−

i ≤ ρ+

i .
The binary search sequentially refines a bracketing ρ− < ρ∗ <

ρ+ until the true rootρ∗ lies between two consecutive breakpoints.
The bracket is adjusted inward by finding a breakpoint ρ within it
and testing the sign of the derivative of the dual objective (5). To
evaluate that derivative at ρ, we first fix

xi :=


li, if ρ ≥ ρ+

i ,

ui, if ρ ≤ ρ−

i .
(11)

The remaining minimizers are critical points: f ′

i (xi) + ρg ′

i (xi) = 0
and li < xi < ui. Depending on the problem data, these critical
points might be found (a) in closed form, (b) by using a problem-
specific implementation of Newton’s method, or (c) by means of
a general-purpose Newton’s method with Armijo linesearch for
sufficient decrease and damping (as needed) to maintain li < xi <
ui. The derivative value atρ is then given by−b+


i gi(xi), the sign

of which determineswhether ρ becomes the new ρ− or ρ+. This in
turn determines, through (11), that some values of xi shall remain
fixed and can therefore be removed from further consideration.

The final bracket, if nontrivial, consists of two closest break-
pointswith the optimal value ofρ lying somewhere between them.
To interpolate between them, our implementation finds ρ and the
unfixed xi-coordinates (denoted by i ∈ I) simultaneously by apply-
ing a multi-dimensional Newton’s method with Armijo linesearch
to the corresponding Lagrange multiplier conditions


i∈I gi(xi) =

b̂ and f ′

i (xi) + ρg ′

i (xi) = 0 for i ∈ I .
Throughout the procedure, the subproblem optimizations are

initialized using the corresponding solutions from prior iterations.
Also, we extract the required median values without sorting
the list of breakpoints in advance, which can yield significant
computational savings if each subproblem solution requires only
a few operations per index i [1,4,7,9].
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