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a b s t r a c t

We approximate as closely as desired the Pareto curve associatedwith bicriteria polynomial optimization
problems. We use three formulations (including the weighted sum approach and the Chebyshev approx-
imation) and each of them is viewed as a parametric polynomial optimization problem. For each case is
associated a hierarchy of semidefinite relaxations and from an optimal solution of each relaxation one ap-
proximates the Pareto curve by solving an inverse problem (first two cases) or by building a polynomial
underestimator (third case).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let P be the bicriteria polynomial optimization problem (POP)
minx∈S{(f1(x), f2(x))}, where S ⊂ Rn is the basic semialgebraic set:

S := {x ∈ Rn
: g1(x) ≥ 0, . . . , gm(x) ≥ 0}, (1)

for some polynomials f1, f2, g1, . . . , gm ∈ R[x]. Here, we assume
the following assumption:

Assumption 1.1. The image space R2 is partially ordered with the
positive orthant R2

+
. That is, given x ∈ R2 and y ∈ R2, it holds

x ≥ ywhenever x − y ∈ R2
+
.

For the multiobjective optimization problem P, one is usually
interested in computing, or at least approximating, the set of
Edgeworth–Pareto (EP) optimal points, defined e.g. in [6, Definition
11.3].

Definition 1.2. Let Assumption 1.1 be satisfied. A point x̄ ∈ S is
called an Edgeworth–Pareto (EP) optimal point of Problem P, when
there is no x ∈ S such that fj(x) ≤ fj(x̄), j = 1, 2 and f (x) ≠ f (x̄).
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A point x̄ ∈ S is called a weakly Edgeworth–Pareto optimal point of
Problem P, when there is no x ∈ S such that fj(x) < fj(x̄), j = 1, 2.

In this paper, for conciseness, we will also use the following
terminology:

Definition 1.3. The image set of weakly Edgeworth–Pareto opti-
mal points is called the Pareto curve.

Given a positive integer p and λ ∈ [0, 1] both fixed, a common
workaround consists in solving the scalarized problem:

f p(λ) := min
x∈S

{[(λf1(x))p + ((1 − λ)f2(x))p]1/p}, (2)

which includes the weighted sum approximation (p = 1)

P1
λ : f 1(λ) := min

x∈S
(λf1(x) + (1 − λ)f2(x)), (3)

and the weighted Chebyshev approximation (p = ∞)

P∞

λ : f ∞(λ) := min
x∈S

max{λf1(x), (1 − λ)f2(x)}. (4)

Here, we assume that for almost all (a.a.) λ ∈ [0, 1], the solu-
tion x∗(λ) of the scalarized problem (3) (resp. (4)) is unique.
Non-uniqueness may be tolerated on a Borel set B ⊂ [0, 1], in
which case one assumes image uniqueness of the solution. Then,
by computing a solution x∗(λ), one can approximate the set
{(f ∗

1 (λ), f ∗

2 (λ)) : λ ∈ [0, 1]}, where f ∗

j (λ) := fj(x∗(λ)), j = 1, 2.
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Other approaches include using a numerical scheme such as the
modified Polakmethod [11]: first, one considers a finite discretiza-
tion (y(k)

1 ) of the interval [a1, b1], where

a1 := min
x∈S

f1(x), b1 := f1(x), (5)

with x being a solution of minx∈S f2(x). Then, for each k, one com-
putes an optimal solution xk of the constrained optimization prob-
lem y(k)

2 := minx∈S{f2(x) : f1(x) = y(k)
1 } and select the Pareto curve

from the finite collection {(y(k)
1 , y(k)

2 )}. This method can be im-
proved with the iterative Eichfelder–Polak algorithm; see e.g. [3].
Assuming the smoothness of the Pareto curve, one can use the La-
grangemultiplier of the equality constraint to select the next point
y(k+1)
1 . It allows us to combine the adaptive control of discretiza-

tion points with themodified Polak method. In [2], Das and Dennis
introduce the Normal-boundary intersection (NBI) method which
can find a uniform spread of points on the Pareto curve with more
than two conflicting criteria and without assuming that the Pareto
curve is either connected or smooth. However, there is no guar-
antee that the NBI method succeeds in general and even in case it
works well, the spread of points is only uniform under certain ad-
ditional assumptions. Interactivemethods such as STEM [1] rely on
a decisionmaker to select at each iteration theweight λ (most often
in the case p = ∞) and to make a trade-off between criteria after
solving the resulting scalar optimization problem.

So discretization methods suffer from two major drawbacks.
(i) They only provide a finite subset of the Pareto curve and (ii) for
each discretization point one has to compute a global minimizer
of the resulting optimization problem (e.g. (3) or (4)). Notice that
when f and S are both convex then point (ii) is not an issue.

In a recent work [4], Gorissen and den Hertog avoid discretiza-
tion schemes for convex problems with multiple linear criteria
f1, f2, . . . , fk and a convex polytope S. They provide an inner ap-
proximation of f (S) + Rk

+
by combining robust optimization tech-

niques with semidefinite programming (SDP); for more details the
reader is referred to [4].
Contribution. We provide a numerical scheme with two charac-
teristic features: it avoids a discretization scheme and approxi-
mates the Pareto curve in a relatively strong sense. More precisely,
the idea is consider multiobjective optimization as a particular in-
stance of parametric polynomial optimization forwhich some strong
approximation results are availablewhen the data are polynomials
and semi-algebraic sets. In fact we will investigate this approach
with three methods: method (a) for the first formulation (3) when
p = 1, this is a weighted convex sum approximation; method (b)
for the second formulation (4) when p = ∞, this is a weighted
Chebyshev approximation; method (c) for a third formulation in-
spired by [4], this is a parametric sublevel set approximation.

When using some weighted combination of criteria (p = 1,
method (a) or p = ∞, method (b)) we treat each function λ →

fj(λ), j = 1, 2, as the signed density of the signed Borel measure
dµj := fj(λ)dλ with respect to the Lebesgue measure dλ on [0, 1].
Then the procedure consists of two distinct steps:

(1) In a first step, we solve a hierarchy of semidefinite programs
(SDP)which permits us to approximate any finite number s+1
of moments mj := (mk

j ), k = 0, . . . , swhere:

mk
j :=

 1

0
λkf ∗

j (λ)dλ, k = 0, . . . , s, j = 1, 2.

More precisely, for any fixed integer s, step d of the SDP hier-
archy provides an approximationmd

j ofmj which converges to
mj as d → ∞.

(2) The second step consists of two density estimation problems:
namely, for each j = 1, 2, and given the moments mj of
the measure f ∗

j dλ with unknown density f ∗

j on [0, 1], one

computes a univariate polynomial hs,j ∈ Rs[λ] which solves
the optimization problem minh∈Rs[λ]

 1
0 (f ∗

j (λ) − h)2dλ if the
moments mj are known exactly. The corresponding vector of
coefficients hs

j ∈ Rs+1 is given by hs
j = Hs(λ)−1mj, j = 1, 2,

where Hs(λ) is the s-moment matrix of the Lebesgue measure
dλ on [0, 1]; therefore in the expression for hs

j we replace mj
with its approximation.

Hence for both methods (a) and (b), we have L2-norm convergence
guarantees.

Alternatively, in our method (c), one can estimate the Pareto
curve by solving for each λ ∈ [a1, b1] the following parametric
POP:
Pu

λ : f u(λ) := min
x∈S

{ f2(x) : f1(x) ≤ λ }, (6)

with a1 and b1 as in (5). Notice that by definition f u(λ) = f ∗

2 (λ).
Then,wederive an SDPhierarchy parametrized by d, so that the op-
timal solution q2d ∈ R[λ]2d of the d-th relaxation underestimates
f ∗

2 over [a1, b1]. In addition, q2d converges to f ∗

2 with respect to the
L1-norm, as d → ∞. In this way, one can approximate from below
the set of Pareto points, as closely as desired. Hence for method (c),
we have L1-norm convergence guarantees.

It is important to observe that even though P1
λ, P

∞

λ and Pu
λ are

all global optimization problems we do not need to solve them
exactly. In all cases the information provided at step d of the SDP
hierarchy (i.e. md

j for P1
λ and P∞

λ and the polynomial q2d for Pu
λ)

permits us to define an approximation of the Pareto curve. In other
words even in the absence of convexity the SDP hierarchy allows
us to approximate the Pareto curve and of course the higher in the
hierarchy the better is the approximation.

The paper is organized as follows. Section 2 is dedicated to
recalling some background about moment and localizing matri-
ces. Section 3 describes our framework to approximate the set
of Pareto points using SDP relaxations of parametric optimization
programs. These programs are presented in Section 3.1 while we
describe how to reconstruct the Pareto curve in Section 3.2. Sec-
tion 4 presents some numerical experiments which illustrate the
different approximation schemes.

2. Preliminaries

Let R[λ, x] (resp. R[λ, x]2d) denote the ring of real polynomials
(resp. of degree at most 2d) in the variables λ and x = (x1, . . . , xn),
whereas Σ[λ, x] (resp. Σ[λ, x]d) denotes its subset of sums of
squares of polynomials (resp. of degree at most 2d). For every
α ∈ Nn the notation xα stands for the monomial xα1

1 . . . xαn
n and

for every d ∈ N, let Nn+1
d := {β ∈ Nn+1

:
n+1

j=1 βj ≤ d}, whose

cardinal is sn(d) =


n+1+d

d


. A polynomial f ∈ R[λ, x] is written

f (λ, x) =


(k,α)∈Nn+1 fkαλkxα and f can be identified with its vec-
tor of coefficients f = (fkα) in the canonical basis (xα), α ∈ Nn.
For any symmetric matrix A the notation A ≽ 0 stands for A being
semidefinite positive. A real sequence z = (zkα), (k, α) ∈ Nn+1, has
a representing measure if there exists some finite Borel measure µ
on Rn+1 such that

zkα =


Rn+1

λkxα dµ(λ, x), ∀(k, α) ∈ Nn+1.

Given a real sequence z = (zkα) define the linear functional Lz :

R[λ, x] → R by:

f


=


(k,α)

fkαλkxα


→ Lz(f ) =


(k,α)

fkα zkα, f ∈ R[λ, x].

Moment matrix. The moment matrix associated with a sequence
z = (zkα), (k, α) ∈ Nn+1, is the real symmetric matrix Md(z) with
rows and columns indexed by Nn+1

d , and whose entry (i, α), (j, β)

is just z(i+j)(α+β), for every (i, α), (j, β) ∈ Nn+1
d .
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