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a b s t r a c t

We establish conventional heavy-traffic limits for the number of customers in a Gt/GI/s queue with
a periodic arrival process. We assume that the arrival counting process can be represented as the
composition of a cumulative stochastic process that satisfies an FCLT and a deterministic cumulative rate
function that is the integral of a periodic function. We establish three different heavy-traffic limits for
three different scalings of the deterministic arrival rate function. The different scalings capture the three
cases in which the predictable deterministic variability (i) dominates, (ii) is of the same order as, or (iii)
is dominated by the stochastic variability in the arrival and service processes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we establish heavy-traffic functional weak laws
of large numbers (FWLLNs) and functional central limit theorems
(FCLTs) for Gt/GI/s queues with arrival processes having periodic
arrival rate functions. The model has a fixed number of servers
working in parallel, an unlimited waiting space and the first-come
first-served service discipline. By ‘‘conventional heavy traffic’’, we
mean that we allow the arrival rate to increase, but keep the
maximum possible service rate fixed.

Conventional heavy-traffic approximations help understand
the performance of complex queueing systems; see [21] for a re-
view (especially Chapters 5 and 9). Highlights are Kingman [9]
showing that the steady-state wait in a GI/GI/1 queue can be
approximated by an exponential random variable and Iglehart
and Whitt [6,7] showing that the entire waiting time (and queue
length) process in a G/G/s queue can be approximated by a re-
flected Brownian motion (RBM) with negative drift, which has an
exponential steady-state distribution, where the mean of the ex-
ponential distribution and the drift and diffusion coefficients of the
RBM depend on the basic rate and variability parameters of the ar-
rival and service processes.

It is important to note that Mandelbaum and Massey [13] al-
ready developed conventional heavy-traffic approximations for
queues with time-varying arrival processes. They analyzed the
Mt/Mt/1 model and showed that the presence of time-varying ar-
rival rate can introduce major complications; e.g., there is need for
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care in even properly defining a proper notion of traffic intensity;
see § 3 of [13]. In [13] an elaborate theory is developed, which
demonstrates both complex performance, e.g., see Figs. 3.1 and 4.1
in [13] and complex proof techniques, including the use of the Sko-
rohod M1 topology to treat the discontinuities evident in Fig. 4.1
of [13].

In contrast, our goal is to expose the more elementary stories
that follow quite directly from [7] if we make additional simpli-
fying assumptions. In particular, we only focus on the first-order
performance. If there is an important story in the deterministic
fluid approximation stemming from the FWLLN, then we focus on
that FWLLN. We only consider the heavy-traffic FCLT when that
provides the first-order description of performance, i.e., when the
FWLLN is the same as for themodelwith a constant arrival rate.We
then can see if the time-varying arrival rate is insignificant in the
heavy-traffic limits by seeing if it plays no role in either the FWLLN
or the FCLT.

The theory in [7] implies that, under regularity conditions, a
heavy-traffic FWLLN (FCLT) holds for the queue length process
whenever FWLLNs (FCLTs) hold for the arrival and service pro-
cesses. Thus, for periodic arrival processes, previous heavy-traffic
FWLLNs and FCLTs can be applied if we have an FWLLN and an FCLT
for the periodic arrival process. In particular, we can apply Theo-
rem 1 of [7] and basic continuous mapping arguments to establish
conventional heavy-traffic limits for the Gt/GI/s model. This im-
portant consequence of [7] no doubt has been recognized, but ev-
idently nothing has been published.

An important role in the conventional heavy-traffic limits is
played by the scaling of both time and space. Roughly, the required
scaling is the same as needed for a sequence of simple random
walks to converge to a Brownian motion with drift: we need to
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scale time by some factor n and then scale space by 1/
√
n, with the

mean step being c/
√
n. Since the mean step is related to the traffic

intensity of the queue, n should be related to the traffic intensity
ρ in the queueing system by 1 − ρn = 1/

√
n. The important

observation is that in terms of the traffic intensity ρ the required
time scaling is (1 − ρ)−2.

As we show here in Corollary 3.1, when time scaling is omitted
from the deterministic arrival rate function in the standard heavy-
traffic FCLT, the heavy-traffic limitwith the time scaling is the same
as if the periodic cycles in the periodic arrival rate function are
getting shorter in the heavy-traffic limit as ρ ↑ 1. As a conse-
quence, there is still a heavy-traffic limit, but that limit is the same
as if the periodic arrival rate were replaced by its long-run aver-
age. This phenomenon was first shown for the Mt/GI/1 model by
Falin [4], but without mentioning any connection to time scaling.
When the time scaling is included, the approximation stemming
from the heavy-traffic FCLT is a reflection of the usual Brownian
motion with drift plus a deterministic cumulative rate function as-
sociated with a periodic arrival rate function.

We are especially interested in the time scaling. In the main
heavy-traffic FCLT, Theorem 3.2 here, the limit process is relatively
complicated so that it is not easy to compute the approximate per-
formancemeasures. It thusmay be necessary to exploit simulation
in order to quantify performance. Nevertheless, the heavy-traffic
limits can provide useful insight into the simulations. As illustrated
by [1], heavy-traffic scaling can help understand numerical perfor-
mance calculations, because greater regularity is revealed. Indeed,
we were motivated to establish these heavy-traffic limits in our
study of gray-box modeling of queueing systems in [2,3], in which
birth-and-death processes are fit to observations of a queue-length
process. Specifically, the present paper arose in the study of that
approach applied to periodic queues in [3].

Our approach has an important implication. By focusing on only
the first-order performance, we determine when the predictable
deterministic variability or the unpredictable stochastic variability
dominates. We establish different heavy-traffic limits showing
when the predictable deterministic variability (i) dominates, (ii) is
of the same order as, or (iii) is dominated by the stochastic
variability in the arrival and service processes. The more detailed
analysis in [13] shows (i) that there may be different answers
at different times and (ii) how to describe the refined second-
order performance (diffusion approximation) for the first-order
performance (deterministic fluid model) when the deterministic
variability dominates.

We make two additional comments about [13]. First, since we
tell only a part of the story in [13], it follows that the story can be
deduced from the reasoning of [13], extended from the Mt/Mt/1
to Gt/GI/s model, but that is a more difficult route. Second, the
additional structure revealed in themore general analysis in [13] is
also important for understanding the performance of queues with
time-varying parameters.

In closing this introduction, we remark that the conventional
heavy-traffic regime is quite different from the many-server
heavy-traffic regime, which we also briefly discuss in Section 4
for comparison. Since there is no time scaling in the many-server
heavy traffic regime, the many-server heavy-traffic approxima-
tions are more straightforward in engineering applications. There
also is already a significant body of related literature on many-
server heavy-traffic approximations for queues with time-varying
arrival rates in [14,17,10,19,11]. In both settings, these results are
facilitated by previous results concluding that heavy-traffic limits
for the queue length dependon the arrival process through its FCLT.
Thus in both cases it suffices to establish an FCLT for the arrival pro-
cess with the appropriate scaling.

2. The arrival process model

Wewill consider periodic stochastic arrival counting processes
defined by

A(t) ≡ N(Λ(t)), t ≥ 0, (1)

where N is a stochastic counting process satisfying a functional
central limit theorem (FCLT), i.e.,

N̂n(t) ≡ n−1/2
[N(nt) − nt] ⇒ caBa(t) in D as n → ∞, (2)

where⇒denotes convergence in distribution in the function space
D of right-continuous real-valued functions on the interval [0, ∞)
with left limits, as in [21], and Ba is a standard (drift 0, variance
1) Brownian motion (BM), while Λ is a cumulative arrival rate
function, satisfying

Λ(t) ≡

 t

0
λ(s) ds, t ≥ 0, (3)

with λ being a periodic arrival rate function, which is assumed to
be integrable over finite intervals with finite long-run average

λ̄ ≡ lim
t→∞

t−1Λ(t). (4)

Throughout this paper, we assume that the cumulative arrival
rate function Λ in (3) is deterministic, but it is significant that
the results here can be extended to cover the case in which the
arrival rate function is a stochastic process,which can be important
in applications. For example, service system arrival process data
often indicate overdispersion caused by day-to-day variation, as
discussed in [8].

The construction in (1) is convenient for constructing non-
Markov periodic arrival processes. It was suggested by [15] and
also used by [5,12] and no doubt others. However, it is important to
recognize that, even though it allows very general stochastic pro-
cesses N , including renewal processes and much more (see § 4.4
of [21]), this model is highly structured, having all unpredictable
stochastic variability associated with the process N , with its FCLT
behavior captured by the single variability parameter ca, while all
the predictable deterministic variability associated with the de-
terministic arrival rate function λ and its associated cumulative
rate function Λ. More generally, we might contemplate a time-
varying variability parameter. In the present context, if the process
N is a renewal counting process, then ca is the square root of c2a ,
the squared coefficient of variation (scv, variance divided by the
square of the mean) of an interarrival time. From an engineering
perspective, the tractability produced by reducing the impact of
the stochastic variability to the single parameter c2a may be essen-
tial for drawing useful conclusions about system performance.

3. Conventional heavy-traffic limits for the Gt/GI/s model

In this section we establish heavy-traffic limits for the
queue-length process (number in system) in the Gt/GI/s model,
which has s homogeneous servers working in parallel, unlimited
waiting room and customers entering service in order of arrival.
We assume that the service times come from a sequence of
independent and identically distributed (i.i.d.) random variables,
which is independent of the arrival process. We let the mean
service time be s and its scv be c2s . This choice of the mean makes
the maximum total service rate be 1. We let the arrival process be
periodic with the structure in (1)–(4).

We will construct a family of models indexed by the traffic
intensity ρ and let ρ increase toward 1, its upper limit for stability.
Wewill let the traffic intensity be determined by the deterministic
arrival rate functionλ, requiring thatλρ = ρλ for eachρ, wherewe
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