
Operations Research Letters 44 (2016) 153–157

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Permutation schedules for a two-machine flow shop with storage
Joey Fung ∗, Yakov Zinder
School of Mathematical and Physical Sciences, University of Technology Sydney, PO Box 123, Broadway NSW 2007, Australia

a r t i c l e i n f o

Article history:
Received 28 February 2015
Received in revised form
23 November 2015
Accepted 16 December 2015
Available online 23 December 2015

Keywords:
Flow shop
Buffer
Permutation schedule
Makespan

a b s t r a c t

This paper considers a two-machine flow shop problemwith a buffer, arising in various applications, and
addresses a fundamental question of the existence of an optimal permutation schedule. The paper proves
that the problemof recognisingwhether an instance has an optimal permutation schedule is NP-complete
in the strong sense, and estimates the deviation from the optimal makespan as a result of the restriction
to permutation schedules only.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper is motivated by the question, posed in [3,4], on
whether or not any instance of the two-machine flow shop,
considered in these publications, has an optimal schedule with the
same order of jobs on both machines. For any flow shop model, a
schedule with the same order of jobs on all machines is referred to
as a permutation schedule. The answer to the question of whether
there exists an optimal permutation schedule is fundamental in
the analysis of any flow shop model and affects the design of
scheduling algorithms (see for example [1,5,7]). The results in this
paper are in the same spirit as those presented in [8] for a different
flow shop model.

This paper proves that, for the considered flow shop model,
the answer to the abovementioned question in general is negative.
It is proven that the deviation from the optimum makespan, as
a result of the restriction to only permutation schedules, can be
made arbitrarily large by increasing the number of jobs, even if
the maximum duration of operations and the buffer consumption
by each job are bounded above by constants. These results are
complemented by the proof that, unless P = NP , there is no
polynomial-time algorithm which can detect whether or not a
given instance has an optimal permutation schedule.

The considered flow shop model includes a specific type of
buffer and was originally introduced in [6] for the purpose of
optimising the object sequence in a prefetch-enabled TV-like

∗ Corresponding author.
E-mail addresses: Joey.Fung@uts.edu.au (J. Fung), Yakov.Zinder@uts.edu.au

(Y. Zinder).

presentation. Besides this application, the considered scheduling
model is also relevant to various situations involving loading and
unloading operations.

The problem considered in [6,3,4] can be stated as follows. The
set of jobs N = {1, . . . , n} is to be processed on two machines,
M1 and M2. Each job j is processed on M1 for p1j > 0 units of
time (first operation) and then on M2 for p2j > 0 units of time
(second operation). Each job cannot start processing on M2 before
completing its first operation onM1.

Besides the two machines, the processing of jobs requires a
buffer. When job j begins processing on M1, it consumes sj units
of buffer space. This space is released when the job completes
processing on M2. The capacity of the buffer is denoted by Ω .
That is, the total size of all jobs which are either currently
being processed on one of the two machines, or which have
completed the first operation and are waiting in the buffer for the
commencement of the second operation, cannot exceed Ω . The
size sj of each job j is proportional to p1j, and therefore, without
loss of generality, it is assumed that sj = p1j (see [3]).

All jobs are available for processing from time t = 0. A schedule
σ is defined by the starting times of all operations. The starting
time of operation i of job j is denoted S ij(σ ). The completion of
operation i of job j is C i

j (σ ) = S ij(σ ) + pij. So, equivalently the
schedule can be defined by the completion times of all operations.
It is necessary to find a schedule which minimises the makespan,
i.e. the objective function

Cmax(σ ) = max
j∈N

C2
j (σ ). (1)

The rest of this paper is structured as follows. Section 2 proves
that, for n ≤ 4, there exists an optimal permutation schedule.

http://dx.doi.org/10.1016/j.orl.2015.12.012
0167-6377/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2015.12.012
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2015.12.012&domain=pdf
mailto:Joey.Fung@uts.edu.au
mailto:Yakov.Zinder@uts.edu.au
http://dx.doi.org/10.1016/j.orl.2015.12.012


154 J. Fung, Y. Zinder / Operations Research Letters 44 (2016) 153–157

Section 3 establishes bounds on the maximum deviation from the
optimum under the restriction that only permutation schedules
are considered. Section 4 proves that, unless P = NP , there is
no polynomial-time algorithm which can detect whether or not a
given instance has an optimal permutation schedule.

2. Case n ≤ 4: permutation schedules

The following lemma holds for all n.

Lemma 1. For any instance, there exists an optimal schedule where
the job processed first on M1 is also the first on M2, and the job
processed last on M1 is also the last on M2.

Proof. Suppose that in an optimal schedule σ ∗, either the job h,
which is processed first on M2, is not the first on M1, or that the
job k, which is processed last on M1, is not the last on M2, or both.
Since the processing onM2 starts in σ ∗ only after the point in time
C1
h (σ ∗), all jobs which are processed onM1 between points in time

t = 0 and t = C1
h (σ ∗) can be processed onM1 in this time interval

in any order without violating the feasibility. In particular, these
jobs can be processed onM1 in the order where h is first.

Similarly, since no jobs are processed on M1 after t = S2k (σ
∗),

all jobs which are processed on M2 between t = S2k (σ
∗) and

t = Cmax(σ
∗) can be processed on M2 in this time interval in any

order without violating the feasibility. In particular, these jobs can
be processed onM2 in the order where k is last. �

Two jobs are processed concurrently if and only if there exists a
time period duringwhich these jobs are processed simultaneously.

Theorem 1. For any instance with n ≤ 4, there exists an optimal
permutation schedule.

Proof. By Lemma 1, there exists an optimal schedule σ ∗ where
the first job and the last job on M1 are also the first and the last,
respectively, on M2. Therefore, if n ≤ 3, then there exists an
optimal permutation schedule.

Let n = 4 and assume that there exists a job j which is not
processed in σ ∗ concurrently with any other job. In this case, there
exists an optimal permutation schedule for the remaining three
jobs, and the proof is concluded by appending job j to this schedule.

Assume that each job is processed concurrently with some
other job. Taking into account Lemma 1, without loss of generality,
assume that the jobs are processed in σ ∗ on M1 in the sequence
j1, j2, j3, j4, whereas onM2 in the sequence j1, j3, j2, j4. Then,

C1
j2(σ

∗) < C1
j3(σ

∗) ≤ S2j3(σ
∗) < S2j2(σ

∗),

which implies that j2 and j3 are not processed in σ ∗ concurrently,
since the first operations of these two jobs are completed before
the start of their second operations.

Suppose that j3 is processed inσ ∗ concurrentlywith j1. Consider
the permutation schedule σ ′ such that S1j3(σ

′) = S1j2(σ
∗) and

C1
j2
(σ ′) = C1

j3
(σ ∗) and the completion times of all other operations

in σ ′ are the same as in σ ∗. So, σ ′ differs from σ ∗ only by the order
of j2 and j3 onM1. Then,

C1
j3(σ

′) < C1
j2(σ

′) = C1
j3(σ

∗) ≤ S2j3(σ
∗) < S2j2(σ

∗),

and because S2j3(σ
∗) = S2j3(σ

′) and S2j2(σ
∗) = S2j2(σ

′),

C1
j2(σ

′) ≤ S2j2(σ
′) and C1

j3(σ
′) ≤ S2j3(σ

′). (2)

Before the point in time S1j4(σ
′), only j1, j2 and j3 can use the

buffer. The order in which jobs are processed in σ ∗ and the as-
sumption that j1 and j3 are processed concurrently give S1j3(σ

∗) <

C2
j1
(σ ∗). Hence,

S1j1(σ
∗) < S1j2(σ

∗) < S1j3(σ
∗) < C2

j1(σ
∗) < C2

j3(σ
∗) < C2

j2(σ
∗),

and between points in time S1j3(σ
∗) and C2

j1
(σ ∗), j1, j2 and j3 use

the buffer simultaneously. Given that the transformation of σ ∗ into
σ ′ does not affect the consumption of the buffer from the point in
time C1

j3
(σ ∗) and that C1

j3
(σ ∗) ≤ S1j4(σ

′), this transformation can-
not violate the buffer size. This, together with (2), gives the fea-
sibility of σ ′, and the theorem follows from the observation that
Cmax(σ

′) = Cmax(σ
∗).

Assume that j3 is processed in σ ∗ concurrently with j4. Con-
sider the permutation schedule σ ′′ such that S2j2(σ

′′) = S2j3(σ
∗)

and C2
j3
(σ ′′) = C2

j2
(σ ∗) and the completion time of all other oper-

ations are identical to σ ∗. So, σ ′′ differs from σ ∗ only by the order
in which j2 and j3 are processed on M2 between the points in time
S2j3(σ

∗) and C2
j2
(σ ∗). Observe that

C1
j2(σ

∗) < C1
j3(σ

∗) ≤ S2j3(σ
∗) = S2j2(σ

′′) < S2j3(σ
′′),

and because C1
j2
(σ ∗) = C1

j2
(σ ′′) and C1

j3
(σ ∗) = C1

j3
(σ ′′),

C1
j2(σ

′′) ≤ S2j2(σ
′′) and C1

j3(σ
′′) ≤ S2j3(σ

′′). (3)

After the point in time C2
j1
(σ ′′), only j2, j3 and j4 use the buffer.

The order, in which the jobs are processed in σ ∗, and the assump-
tion that j3 is processed concurrently with j4 in σ ∗ gives S1j4(σ

∗) <

C2
j3
(σ ∗). Hence,

S1j2(σ
∗) < S1j3(σ

∗) < S1j4(σ
∗) < C2

j3(σ
∗) < C2

j2(σ
∗) < C2

j4(σ
∗),

and between the points in time S1j4(σ
∗) and C2

j3
(σ ∗), j2, j3 and j4 use

the buffer simultaneously. Since S2j3(σ
∗) ≥ C2

j1
(σ ∗) = C2

j1
(σ ′′) and

since σ ∗ and σ ′′ differ only after the point in time S2j3(σ
∗), schedule

σ ′′ does not violate the buffer size. This, combined with (3), gives
the feasibility of σ ′′. Finally, the theorem follows from the obser-
vation that Cmax(σ

′′) = Cmax(σ
∗). �

3. Case n ≥ 5: difference in makespan

Let α and η be any positive integers and consider the instance
I0 with Ω = 9α and N = G ∪ H ∪ J , where the sets G,H and J are
specified as follows.

• The set G contains 2η identical jobs. For each g ∈ G, p1g = 2α
and p2g = 5α.

• The set H contains 2η identical jobs. For each h ∈ H, p1h = 5α
and p2h = 1.

• The set J contains η identical jobs. For each j ∈ J, p1j = 5α and
p2j = 4α.

Lemma 2. For any optimal schedule σ ∗ for I0,

Cmax(σ
∗) = η(19α + 2) (4)

and, for each 0 ≤ t < Cmax(σ
∗), there exists exactly one e ∈ H ∪ J

and i ∈ {1, 2}, satisfying S ie(σ
∗) ≤ t < C i

e(σ
∗).

Proof. Since se = 5α for each e ∈ H ∪ J and since Ω = 9α, no
two jobs from H ∪ J can be processed concurrently. Hence, for any
schedule σ

Cmax(σ ) ≥


e∈H∪J

(p1e + p2e) = η(19α + 2). (5)

Observe that if (5) is equality, the corresponding σ is optimal and
satisfies the lemma. It remains to prove that the right hand side in
(5) is attainable.

Partition N into η disjoint sets, each containing two jobs from
G, two jobs from H and one job from J . Let N ′

= {g1, g2, h1, h2, j}
be one of these sets, where g1 ∈ G, g2 ∈ G, h1 ∈ H, h2 ∈ H and
j ∈ J .



Download English Version:

https://daneshyari.com/en/article/1142206

Download Persian Version:

https://daneshyari.com/article/1142206

Daneshyari.com

https://daneshyari.com/en/article/1142206
https://daneshyari.com/article/1142206
https://daneshyari.com

