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a b s t r a c t

The expected utility knapsack problem is to pick a set of items with random values so as to maximize
the expected utility of the total value of the items picked subject to a knapsack constraint. We devise
an approximation algorithm for this problem by combining sample average approximation and greedy
submodular maximization. Our main result is an algorithm that maximizes an increasing submodular
function over a knapsack constraint with an approximation ratio better than the well known (1 − 1/e)
factor.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper develops an approximation algorithm for the ex-
pected utility knapsack problem. Given a ground set of n items
U = {1, . . . , n}; a random non-negative vector of values ã for the
items; a positive integer vector bofweights for the items; a positive
integer capacity of B; and a utility function f : R+ → R+; the ex-
pected utility knapsack problem is to pick a subset S of items so to

max
S⊆U


F(S) := E [f (ã(S))] | b(S) ≤ B


, (SP)

where x(S) :=


i∈S xi. Note that the expectation above is with re-
spect to the distribution of ã. Throughout the paper, we assume
f (0) = 0 and f (a(S)) ≥ 1 for any a ∼ ã and S ≠ ∅. There-
fore F(∅) = 0 and F(S) ≥ 1 for S ≠ ∅. We further assume that
the utility function f is strictly increasing and concave which cor-
responds to risk-averse preferences [17,10]. Commonly used util-
ity functions such as log-utility f (t) = log t , exponential utility
f (t) = 1 − e−αt for α > 0, and power utility f (t) = tp for
0 < p < 1, all satisfy this assumption.

Concavity of f along with the non-negativity of ã implies that
the expected utility F is a submodular function of the selected
set S (cf. [1]). Accordingly, (SP) is a submodular maximization
problem with a knapsack constraint. It is well known that in
general the approximation ratio for such problems is bounded by
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(1− 1/e) [6]. Moreover a variant of the greedy algorithm achieves
this bound [13]. However these results assume a value oracle
model where the underlying submodular function is general and
can be evaluated exactly.

In (SP) evaluation of F requires evaluating a multidimensional
integral over the distribution of ã. Moreover, the distribution of ã
may not be explicitly available, but only available through a sam-
pling oracle. In such a setting, exact evaluation of F is impossible.
In this paper we adopt the sample average approximation (SAA)
framework [11] towards approximately evaluating F . In SAA the
original distribution of the uncertain parameters is replaced by an
empirical distribution by sampling a certain number of scenarios.

The sample average approximation of (SP) is

max
S⊆U


FN(S) =

1
N

N
i=1

f (ai(S)) | b(S) ≤ B


(SA)

where {a1, . . . , aN} is an i.i.d sample of ã. Note that FN is
a submodular function and (SA) is a deterministic knapsack
constrained submodular maximization problem. It follows from
classical SAA theory [11] that by solving (SA) corresponding to a
sufficient number of samples N using an approximation algorithm
of a given absolute error δ, with high probability, we can obtain a
solution to the original problem (SP) whose absolute error is not
too large compared to δ. Moreover the required sample size N is
polynomial with respect to problem dimension.

If (SA) is solved using a relative error approximation algorithm
(such as those in the submodular optimization literature) we
need to adapt the SAA theory to recover a corresponding relative
error for the true problem (SP). We make this adaptation. Further
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we develop an approximation algorithm for solving (SA) based
on maximizing increasing submodular functions over a knapsack
constraint. Specifically, the contribution of this paper is two-fold:
SAA analysis under relative error: We prove that with high
probability only a polynomial number of samples is enough for
an approximation algorithm that solves the SAA problem with
relative error to give an approximate solution to the true stochastic
problem of similar relative error. The works by Shmoys and
Swamy [14], and Charikar et al. [3] are most relevant to our work
as they both considered approximation algorithms with relative
error for 2-stage stochastic optimization, rather than the absolute
error usually considered in stochastic programming. However the
polynomial sample size in their results depends on a ratio between
the cost of the first stage and the cost of the second stage, which is
not applicable to our single stage setting. A result similar to ours is
mentioned in [15, pp. 21] but without detailed proof.
Increasing submodular maximization over a knapsack: The increas-
ing and concavity properties of common utility functions imply
that (SA) involves maximizing an increasing submodular function
over a knapsack constraint. Sviridenko [13] recently developed a
greedy algorithm to maximize an increasing submodular function
over a knapsack constraint with approximation ratio (1−1/e). We
adapt this algorithm and its analysis exploiting the strict mono-
tonicity of the utility function and show an approximation ratio
better than the (1−1/e) bound. For power utility functions, we ex-
plicitly characterize the approximation ratio as a function of the
budget B and the exponent of the power function. Some other
works that have improved on the (1− 1/e) bound are by Conforti
and Cornuéjols [4], and Vondràk [16]. However these consider car-
dinality constraints and matroid constraints, respectively, and are
not applicable in our knapsack setting.

We close this section with a brief discussion of some
additional related literature. Li and Deshpande [8] study the
problem of maximizing expected utility for various combinatorial
optimization problems. They assume that the random coefficients
are independent to simplify the expectation operation and use
an approximation of the utility function. We allow more general
distribution but are restricted to the knapsack setting. Klastorin [7]
studies a similar problem but he assumes exact evaluation of
the expectation objective and gives an algorithm that solves
a continuous relaxation of the problem and then uses that
in a branch-and-bound algorithm. Asadpour et al. [2] study
maximizing a stochastic submodular function under matroid
constraints. They assume exact evaluation of the expectation
objective and do not consider increasing submodular functions.
Mehrez and Sinuany-Stern [9] study a variation of the problem
arising in resource allocation applications, but in their model the
utility of items is separable which is different from our setting.
Dean et al. [5] studied a variation where sizes of the elements are
independent random variables while the values of the elements
are deterministic. They devised both ‘‘nonadaptive’’ and ‘‘adaptive’’
policies to choose items in order to maximize the expected value
of items that can be fit in the knapsack.

2. Sample average approximation

In this section,we adapt the classical SAA theory (cf. [12])which
corresponds to an absolute error setting to our required setting of
relative error. We consider a generalization of (SP):

max
S⊆U


F(S) = E [f (ã, S)] | S ∈ X


, (SP0)

where X is the constraint set (e.g. knapsack constraint) and f :
2U
→ R+, parameterized by a, is a nonnegative set function. The

sample average approximation of (SP0) is

max
S⊆U


FN(S) =

1
N

N
i=1

f (ai, S) | S ∈ X


, (SA0)

where {a1, . . . , aN} is an i.i.d sample of ã. Then (SP) is a special case
of (SP0) and (SA) is a special case of (SA0). Let S∗ be an optimal
solution of (SP0). We make the following assumption on f (a, S)
and E [f (ã, S)].

Assumption 1. For any a ∼ ã, S ∈ X , and S ≠ ∅, we assume
f (a, S) ≥ 1. Therefore FN(S) ≥ 1 and F(S) ≥ 1. For any S ∈ X , we
also assume E [f (ã, S)] is well-defined and finite, and E [etf (ã,S)] is
finite in a neighborhood of t = 0.

Using the above assumption and standard Large Deviation
analysis (cf. [11]), we can show that if N is large enough, for every
S ∈ X, FN(S) is close to F(S) in a relative sense.

Lemma 2. Given γ > 0, let σ 2
= max


Var [f (ã, S)] | S ∈ X


and

S∗ be an optimal solution of the problem. If N ≥ 2σ 2

ϵ2
log |X |

γ
, then

Pr


S∈X

|F(S)− FN(S)| ≤ ϵF(S∗)


≥ 1− 2γ . (1)

Proof. Let {a1, . . . , aN} be the i.i.d sample defining FN(S). Let A1 be
the event that there exists a set S such that F(S)−FN(S) > ϵF(S∗),
and let A2 be the event that there exists a set S such that FN(S) −
F(S) > ϵF(S∗). Let σ 2

S = Var [f (ã, S)], then σ 2
= maxS∈X σ 2

S . If
we can show that when N ≥ 2σ 2

ϵ2
log |X |

γ
we have Pr {A1} ≤ γ and

Pr {A2} ≤ γ , then we have the desired inequality (1).
Let us prove that Pr {A1} ≤ γ .

Pr


S∈X

F(S)− FN(S) > ϵF(S∗)


≤


S∈X

Pr

F(S)− FN(S) > ϵF(S)


=


S∈X

Pr

FN(S) < (1− ϵ)F(S)


.

By Assumption 1, we know that F(S) is finite for every S and
E [etf (ã,S)] is finite in a neighborhood of t = 0. So if ϵ is sufficiently
small, by Large Deviation Theory (cf. [12, Sec 7.2.8]), we have

Pr

FN(S) < (1− ϵ)F(S)


≤ exp


−

N(ϵF(S))2

2σ 2
S


.

Thus
S∈X

Pr

FN(S) < (1− ϵ)F(S)


≤


S∈X

exp

−

N(ϵF(S))2

2σ 2
S


≤ |X | exp


−

Nϵ2

2σ 2


≤ γ

which proves Pr {A1} ≤ γ . The proof for Pr {A2} ≤ γ is identical,
which we omit here. �

Equipped with the lemma above, we are ready to show that we
can use any algorithm that solves (SA0) approximately to solve
(SP0) without losing too much.

Theorem 3. Given an algorithm that solves (SA0) with approxima-
tion ratio β , with probability at least 1 − 2γ , we can use the same
algorithm to solve the stochastic problem (SP0) with approximation
ratio β(1− ϵ)− ϵ by sampling ã at least 2σ 2

ϵ2
log |X |

γ
times.
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