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a b s t r a c t

Robust network design refers to a class of optimization problems that occur when designing networks to
efficiently handle variable demands. In this context, Fréchette et al. (2013) recently explored hierarchical
hubbing: a routing strategy involving a multiplicity of ‘‘hubs’’ connected to terminals and each other in a
treelike fashion. For a natural generalization of the VPN problem, we prove a structural characterization
implying that the optimal hierarchical hubbing solution can be found efficiently, and relate this to a
‘‘Generalized VPN Conjecture’’.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Robust network design

Robust network design considers the problem of building net-
works under uncertainty in the pattern of utilization. Introduced
by Ben-Ameur and Kerivin [1], the framework encompasses the
important case of the ‘‘hose model’’ introduced by Fingerhut [5]
and Duffield et al. [3]. It can itself be seen as falling under the
broader umbrella of robust optimization [2].

We refer the reader to [11] for a more in-depth treatment; here
we will give a brief self-contained exposition of the model. We are
given an undirected graph G = (V , E); this should be interpreted
as an existing high-capacity network, in which we can reserve
capacity. We assume there is an unlimited total capacity on any
given link of the network, and that the cost to reserve capacity on
any link is a linear function of the capacity required. Let c : E →

R+ denote the per-unit cost of capacity on each edge. A setW ⊆ V
of terminals needs to be adequately connected using the capacity
reserved.

A traffic pattern (or demand pattern) describes the precise
pairwise demand requirements at some moment in time. It can
be specified by a traffic matrix D, indexed by pairs of terminals;
for terminals i, j, the entry Dij represents the bandwidth needed to
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send data from i to j. In our network, the traffic pattern is not fixed,
but varying (and possibly uncertain). To deal with this, the robust
network design framework allows for a set of traffic patterns to be
prescribed. This (it turns out) can always be taken to be a convex
set, and so we describe this set, or demand universe, as a convex
body U ⊂ RW×W

+ .
In this paper, we will be concerned only with the case of sym-

metric demands, meaning that demand from i to j is not distin-
guishable from demand from j to i. In this case, it is convenient

to consider U to be a subset of R(W2 )
+ , where

W
2


denotes the set of

unordered pairs of terminals, so that Dij = Dji refers to the same
demand.

The robust network design (RND) problem asks for the cheapest
capacity reservation u : E → R+ that can support all traffic
patterns in the specified universe U. To fully specify the problem
however, a further aspect must be considered: the routing scheme.
The coarsest division is into oblivious or dynamic routing. In
dynamic routing, the way in which traffic is routed may vary
arbitrarily as a function of the current traffic pattern. This is
typically infeasible, and we will be concerned here with the more
practical oblivious routing, where the routing used for any given
pair of terminals is specified in advance.Wewill also only consider
single-path routing. The routing scheme in this case is described
by a template P = {Pij : i, j ∈ W }, where Pij is an i–j-path for
each i, j ∈ W . (We do not require this path to be simple.) Since we
consider symmetric demands, Pij = Pji refers to the same path.

Wemay summarize the general robust network design problem
(with oblivious, single-path routing and symmetric demands) as
follows:
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RND problem. Given an undirected graph G = (V , E) with edge
costs c(e), a terminal set W ⊆ V , and a convex demand universe

U ⊂ R(W2 )
+ , a solution to the robust network design problem consists

of a routing template P = {Pij : i, j ∈ W }, and a capacity allocation
u : E → R+, such that U can be routed according to P within the
capacity u, i.e.,

u(e) ≥ max
D∈U


{i,j}⊆W

Dijℓ(Pij, e). (1)

Here, ℓ(P, e) gives the number of times that edge e occurs on the
(possibly non-simple) path P.

The difficulty in this optimization problem lies in choosing the
routing template; once this is fixed, the optimal capacity allocation
can be determined by solving a convex program described by (1),
assuming we have access to at least a separation oracle for U.

Note that there is always an optimum solution template whose
paths Pij are all simple, since any non-simple path can simply
be replaced by a simple path within its support. The reason we
allow non-simple paths is related to the specific type of routing
templates we will be interested in.

The well-studied symmetric hose model [5,3] is parameterized
by a vector b ∈ RW

+
, yielding the universe

H(b) =


D ∈ R(W2 )

+ :


{i,j}⊂W

Dij ≤ bi ∀i ∈ W

.

This models the situation where terminals are connected to the
network with ‘‘hoses’’ of known, fixed capacity, so that the total
demand involving terminal i cannot exceed the capacity bi of its
associated hose link. Any demand pattern that fits through the
hoses should be routable in the final network. These hoses may
model real links, or chosen based on operational criteria; either
way, the hose model gives a simple, useful and concise description
of what the network must be able to handle, making it a very
popular model in the literature.

A number of variations and generalizations of this model have
been considered in the literature [4,7,12,5]. For example, Fréchette
et al. [7] consider the ‘‘capped’’ hose model, where in addition to
the hose capacities b, point-to-point upper bounds on the demands
are also given. In this paper, we will be interested in the following
generalization introduced by Olver and Shepherd [12]. Let T b be an
arbitrary capacitated tree, with nonnegative edge capacities b and
with leaf set in exact correspondence with the terminal setW . We
will call any such capacitated tree a demand tree. We will use T b to
define a demand universe in a simple and natural way: let U(T b)
consist of all demand patterns that can be routed on T b.

The case where T b is a star corresponds precisely to the
hose model; the capacity of the edge adjacent to terminal i
precisely gives the marginal of i. This generalization allows the
network operator more precise control over the demand universe,
hopefully leading to more efficient solutions. In particular, if the
terminals of the network can be logically divided into distinct
groups (e.g., different branches of the company), with limited
communication between groups, this information can be encoded
via U(T b).

We call the RND problem with oblivious routing for this class
of demand universes the generalized VPN problem. It was shown in
[12] that the generalized VPN problem is approximable to within a
factor of 8.

1.2. Hierarchical hubbing

Fréchette et al. [7] define the following variant of the RND
problem. Let T be a tree with leaf set W ; we will call such a tree
a hub tree. A T-embedding is a mapping of the internal nodes of T

into the network, and amapping of each edge e of T to a ‘‘cable’’ that
connects the images of the endpoints of e (see Fig. 1). More than
one node of T can be mapped to the same location, and multiple
cables may run over the same edge of the network. More formally,
we call a map ϕ : V (T ) ∪ E(T ) → V (G) ∪ E(G) a T -embedding if:

(i) ϕ(v) ∈ V (G) for all v ∈ V (T ),
(ii) ϕ(i) = i for all i ∈ W , and
(iii) ϕ(vw) is a simple ϕ(v)–ϕ(w) path in G for each vw ∈ E(T ).

The restriction to simple paths in the above definition is not
necessary, but will be notationally convenient; in any case, there
is no advantage to using non-simple paths. Such an embedding
naturally defines a routing template: for each {i, j} ⊆ W , take the
image of the unique i–j-path in the tree under the mapping (again,
see Fig. 1), yielding an i–j-path in G. Note that this path need not be
simple.

Given ahub tree T , alongwith a T -embedding, a T-hubbing solu-
tion is defined as follows. A T -embedding ϕ is chosen; this defines
the routing template. Moreover, each cable is given a capacity, de-
termined by the maximum load that can be placed on the cable by
a demand in U. Stated differently, for any given f ∈ E(T ), the ca-
ble associated with f is given capacity b(f ) := maxD∈U


i∈S,j∉S Dij,

where S is the terminal set of either component of T \ f . The capac-
ity u(e) allocated to an edge e ∈ E(G) must be at least the sum of
the capacities of the cables running over that edge:

u(e) ≥


f∈E(T ):e∈ϕ(f )

b(f ) for all e ∈ E(G).

The embedding ϕ and the valid capacity allocation u together de-
scribe the T -hubbing solution. A hierarchical hubbing solution is
simply a T -hubbing solution, for some choice of a hub tree T . The
cost of a hierarchical hubbing solution is defined simply as the cost
of its associated capacity allocation.

So we have the following hierarchical hubbing RND problem
(again, in the case of symmetric demands).

RND HH problem. Given an undirected graph G = (V , E) with edge
costs c(e), a terminal set W ⊆ V , and a convex demand universe

U ⊂ R(W2 )
+ , the RNDHH problem is to find the tree T and an embedding

of T that yields the cheapest hierarchical hubbing solution.

Remark 1. It would also be natural to instead choose capacities
by considering the routing template induced by the hierarchical
hubbing, and using (1). This alternative formulation is in general
not the same as described above; there may be situations where
not all cables on a given edge can be simultaneously saturated by a
traffic pattern in U, leading to a larger capacity requirement with
the cable formulation. The formulation that we use in this paper,
and which is also used in [7], seems overall easier to deal with
(e.g., see Lemma 2). If the Generalized VPN Conjecture discussed
in Section 3 is true, it follows immediately that for the universe
U(T b), both formulations have a common optimal solution.

It is easy to confirm that any solution to the RNDHH problem is
a solution to the RND problem, but not vice versa. So in general the
optimal solution to RNDHH can bemore expensive than the optimal
RND solution; in fact, Fréchette et al. [7] demonstrate that the gap
can be Ω(log |V |), for some choices of the universe.

Fréchette et al. [7] are motivated to consider hierarchical
hubbing for a few reasons. In hub routing, all traffic is routed via
a single hub node; this has the advantage that routing decisions
are localized at the hub. In order to address some practical
shortfalls of hub routing, Shepherd and Winzer [13] ask for a
‘‘multihub’’ extension of this. Fréchette et al. argue that hierarchical
hubbing provides a natural such extension (note that it is clearly
a generalization; hub routing corresponds to taking the hub tree
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