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a b s t r a c t

We study Pareto optimality and optimal risk sharing in terms of convex risk measures on Lp-spaces and
provide a characterization result for Pareto optimality of solutions. In comparison to similar approaches
that study this problem on L∞ this setting introduces more flexibility in terms of the underlying model
space. Furthermore, in our setting agents can incorporate different risk measures where some of them
reflect their own preferences and others reflect requirements from regulators.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The problem of optimal risk sharing between two or more
agents has been studied in several papers. The problem formu-
lation is very general and allows one to study interactions of
agents with different preferences towards risk in various contexts.
It started with the early works of [7,2] with applications to insur-
ance problems and resulted in several recently published papers
like [1,10,17,19]. It has applications in different areas of finance,
particularly the areas of actuarial science and portfolio theory are
of great importance. The problem formulation is the following:
Considerm agents, each with an initial random endowment. These
initial endowments add up to an aggregate risky position. Now the
optimal risk sharing problem is to find an optimal allocation of this
aggregate position such that the allocated risk is acceptable to each
agent. Initial endowments of the agents can represent initial en-
dowments in a stock market but equally interpretations like ran-
domly varying water endowments or nation’s quota in producing
diverse pollutants are possible, see [1]. Optimality in this context
in general stands for Pareto optimality. This means that there is no
other allocation such that all agents are better off according to their
attitude towards risk and at least one agent of them is strictly better
off. The attitude towards risk of each agent is usually represented
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by von Neumann–Morgenstern expected utility. Existence results
and characterizations of optimal risk exchanges in this framework
were obtained in various papers, see [15] for an overview. In more
recent works, which study the problem from a financial risk per-
spective, coherent or convex risk measures have taken the role of
the individual risk preference functional of each agent, see for in-
stance [19,5]. As demonstrated in [4] the characterization of Pareto
optimal allocations in this framework reduces to the calculation of
the inf-convolution of convex risk measures. The inf-convolution
of convex risk measures was further studied in [5] and became the
basis of studying the optimal risk sharing problem in [19], where
a subdifferential characterization of Pareto optimality was derived
for the optimal risk sharing problem on L∞.

In our approach we will study the coalitional risk measure
(introduced in [17,16] in terms of general deviation measures)
which will be based on convex risk measures. This auxiliary
functional will be the key to our characterization result for the
proposed risk sharing problem and for Pareto optimality of the
solutions. At first we will provide an existence result for solutions
to our optimal risk sharing problem on Lp, 1 ≤ p ≤ ∞. Then
we will study the structural properties of the coalitional risk
measure. Based on the corresponding properties of the underlying
risk measures we will show that it is monotone, convex and cash-
subadditive and thus obtains a dual representation according to
the results in [9]. Finally we will derive a characterization result
for Pareto optimal solutions to this problem on Lp, 1 ≤ p ≤ ∞.
Thus, themain contribution of this work is, on one hand to provide
an extension of the characterization result of Pareto optimality in
conjunction with convex risk measures from L∞ to Lp spaces and,
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on the other hand to introduce different techniques for the proofs
of this result (instead of the inf-convolution of risk measures we
will use the coalitional risk measure).

2. Notation and important properties of convex risk measures

A risky position will be modeled as a real valued random
variable X from Lp, 1 ≤ p ≤ ∞, on a non-atomic probability space
(Ω, F , P). As usual, we identify two randomvariables if they agree
P-a.s. Inequalities between randomvariables are understood in the
P-a.s. sense. We will introduce for each agent i her individual risk
measure ρi : Lp → R ∪ {∞}, i = 1, . . . ,m. This risk measure will
represent the agents individual attitude towards risk.Wewillwork
with convex and coherent risk measures. Convex risk measures
were introduced and studied in [13,14] based on the following
properties.

(R1) ρ(0) = 0 and ρ(X + r) = ρ(X) − r
for any X ∈ Lp and any r ∈ R,

(R2) ρ(X) ≤ ρ(Y ) for X ≥ Y , X, Y ∈ Lp,
(R3) ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ),

for 0 ≤ λ ≤ 1 and any X, Y ∈ Lp.

A convex risk measure with the property

(R4) ρ(λX) = λρ(X) for any X ∈ Lp and λ ∈ R+,

is called coherent riskmeasure. Coherent riskmeasureswere intro-
duced and studied in [3]. Further properties like comonotonicity of
random variables and law invariance, the Fatou and the Lebesgue
property of risk measures will be needed for our main results. Law
invariance of a functional ρ : Lp → R ∪ {∞} is formulated as
follows. ρ is law-invariant, if ρ(X) = ρ(Y ) whenever X, Y ∈ Lp
have the same probability law. A collection (Y1, . . . , Ym) ∈ (Lp)m
of m real-valued random variables on (Ω, F , P) is comonotone if
for every (i, j) ∈ {1, . . . ,m}

2

(Yi(ω
′) − Yi(ω))(Yj(ω

′) − Yj(ω)) ≥ 0,

for P ⊗ P-a.e. (ω′, ω) ∈ Ω2.
A functional ρ : Lp → R ∪ {∞} satisfies the Lebesgue property

if for every uniformly bounded sequence (Xn)
∞

n=1 tending a.s. to
X ∈ Lp we have ρ(X) = limn→∞ ρ(Xn). ρ satisfies the Fatou
property if we replace the equality in the Lebesgue property with
ρ(X) ≤ lim infn→∞ ρ(Xn). Additionally the concept of convex
orders will be needed in the following. Let X, Y ∈ Lp, then X
dominates Y in the convex order if and only if E(ϕ(X)) ≥ E(ϕ(Y ))
for any convex function ϕ : R → R.

Furthermore the subdifferential of a convex function will play
an important role. Here we will follow the notation from [23]. A
linear functional l : Lp → R is called algebraic subgradient of a
convex functional ρ on Lp at Z ∈ dom ρ if

ρ(X ′) ≥ ρ(Z) + l(X ′
− Z) ∀X ′

∈ Lp. (1)

We will denote the dual space of Lp(Ω, F , P), 1 ≤ p ≤ ∞ by
Lp(Ω, F , P)∗. The dual space of L∞(Ω, F , P) can be identified
with ba(Ω, F , P), the space of bounded finitely additive signed
measures µ on (Ω, F ) such that P(A) = 0 implies µ(A) = 0. The
dual space of L1 can be identified with L∞ and the dual space of Lp
for 1 < p < ∞ is Lq, where 1/p + 1/q = 1. If l is from the dual
space of Lp, 1 ≤ p ≤ ∞ and satisfies (1) we will call it subgradient
of ρ. The set of all subgradients of ρ at Z will be denoted by ∂ρ(Z)
and we will call ∂ρ(Z) the subdifferential of ρ at Z . It is said that
ρ is subdifferentiable at Z if ∂ρ(Z) is nonempty. Moreover, we
will need the Fenchel conjugate of a proper convex risk measure
on Lp which is a function α from the dual space Lp(Ω, F , P)∗ of
Lp(Ω, F , P) to R ∪ {∞} that is defined by

α(l) = sup
X∈Lp(Ω,F,P)

{l(X) − ρ(X)}

Note that property (R1) implies that convex risk measures are
proper. For convex risk measures on L∞ this implies finiteness and
continuity on L∞. Furthermorewe know that any finite convex risk
measure on Lp, 1 ≤ p ≤ ∞ is continuous and subdifferentiable on
Lp, see Proposition 3.1 in [23] or Corollary 2.3 in [20].

Remark 2.1. In the main part of the paper we will work with law-
invariant convex risk measures. In this regard, note that Jouini
et al. [18] have shown for convex functionals on L∞ which are law-
invariant and lower semicontinuous with respect to the topology
induced by ∥ · ∥∞ that these are lower semicontinuous with
respect to the σ(L∞, L1)-topology (see Theorem 2.2 in [18]). This
implies for finite law-invariant convex risk measures on L∞ a dual
representation

ρ(X) = sup
Z∈L1

{E[ZX] − α(Z)} (2)

where the supremum is formed over L1 instead of ba. If a
finite law-invariant convex risk measure (which automatically
satisfies the Fatou property) additionally satisfies the stronger
Lebesgue property the supremum in (2) is attained for every X ∈

L∞ (see Theorem 5.2 in [18]) and it follows from (2) and the
characterization of the subgradient of a convex risk measure ρ at
X , namely

Z ∈ ∂ρ(X) ⇔ ρ(X) = E[ZX] − α(Z),

that the subgradients of ρ at X are in L1, i.e. ∂ρ(X) ⊂ L1. We will
use this fact in Corollaries 4.3 and 4.9.With respect to the Lebesgue
property of finite convex risk measures on Lp, 1 ≤ p < ∞, note
that these risk measures are automatically Fatou and Lebesgue
continuous, see Theorem 3.1 in [20].

3. The risk sharing problem

We are interested in the following problem. Suppose there are
m agents who view risk differently and who are bound to different
multiple regulatory requirements. Consequently each agent i is
equipped with multiple individual risk measures

ρ1
i , . . . , ρ

ri
i

where some of them may reflect her own preferences and other
are regulatory requirements. Following the motivation in [16] the
agents may find different aspects of an asset to be attractive and
thus they may decide to form a joint portfolio in which the share
of investor i is preferred over the optimal portfolio that investor
i can form alone. Then the question arises, how to divide the
future payoff of cooperative portfolio X among the agents. Thuswe
consider divisions Y = (Y1, . . . , Ym), Yi ∈ Lp, i = 1, . . . ,m of X
such that

m
i=1 Yi = X . Wewill denote the set of these divisions by

A (X) =


Y = (Y1, . . . , Ym) ∈ (Lp)m

 m
i=1

Yi = X


and by C (X) ⊂ A (X) we will denote the set of random vectors
from A (X) with comonotone components.

We will assume that each investor takes into account her
individual riskmeasuresρ

j
i by applying cautious riskmeasurement

methods in order to meet worst case situations and chooses to use

ρmax
i (X) = max{ρ1

i (X), . . . , ρ
ri
i (X)}

as her risk measure.
Note that sincewe consider themaximumriskmeasure for each

agent we allow each agent to have her individual number of differ-
ent risk measures. In this way agents can incorporate any number
of different risk measures where some of them reflect their own
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