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a b s t r a c t

The minimum rank problem asks to find the minimum rank over all matrices with a given pattern
associated with a graph. This problem is NP-hard, and there is no known approximation method.
Further, this problem has no straightforward convex relaxation. In this article, a numerical algorithm is
given to heuristically approximate the minimum rank using alternating projections. The effectiveness
of this algorithm is demonstrated by comparing its results to a related parameter: the zero-forcing
number. Using these methods, numerical evidence for the minimum rank graph complement conjecture
is provided.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Seeking the minimum rank of a matrix satisfying given
constraints is a well-studied problem with applications in signal
processing [11,24], data analysis [9], topological embeddings [10],
as well as economics [22]. In general, these problems are NP-hard.
However, certain cases, such as the affine minimum rank problem,
can be solved exactly or approximately with reliable probabilistic
methods and convex optimization [20,27,18].

The problem presented here is to minimize the rank over all
symmetric matrices with a specified sparsity pattern given by a
graph. This sparsity pattern requires certain entries to be zero
and others to be nonzero; the requirement that certain entries be
nonzeromakes the restriction non-affine and non-convex. Further,
these restrictions have no convex relaxation because the zero-
matrix lies within the closure of the corresponding set of matrices.
Hence, recently developed techniques cannot apply [20,27,18].

The biggest obstacle to study of the minimum rank problem for
graphs is that not only is there no known effective method to com-
pute the minimum rank of a graph, but also, there are no efficient
approximation algorithms either. Our main contribution is the de-
velopment of an algorithm to approximate the minimum rank for
larger graphs. Computationally, the minimum rank problem for
graphs is NP-hard [21], and exact computation, in general, has re-
mained elusive for anything but very small graphs. Recent results
have classified all graphs on n vertices with minimum rank 0, 1, 2,
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n− 2, n− 1, and n [2]. Additionally, the minimum rank for certain
families of graphs has been determined exactly [3,6,18]. However,
calculating, or even effectively estimating, the minimum rank of a
graph, in general, still remains open.

The minimum rank problem of a graph has a wide range of
additional variants and applications. First, the minimum rank of a
graph is a relaxation of the Colin de Verdière graph invariant which
serves as a strong connection between Schrödinger operators,
topological embeddings of graphs, and matrix analysis. In fact, the
Colin de Verdière graph invariant gives a spectral characterization
for planar graphs [10,25]. In addition, the zero-forcing number
of a graph introduced in [2] has been used to bound the
minimum rank of a graph from below. We will use the zero-
forcing number as a comparison of our analysis; details are given
in the next section. While the zero-forcing number has yielded
several interesting results in accurately computing the minimum
rank for certain families of graphs [21], the zero-forcing number
itself is also NP-hard [1]. The zero-forcing number is actually
adapted from a previous concept known as power domination
which serves to optimally place power monitoring units within a
power network [4], and its study and application continues to this
day [14,28]. Further, recently the study of zero-forcing has been
extended to determine the controllability of quantum [16,23] and
dynamical systems [19].

We present an iterative algorithm which alternates between
minimizing the rank of a matrix and fitting the matrix to the
given sparsity pattern. This idea is an extension of the method
of alternating projections pioneered by Von Neumann [26] which
has since been perfected by others [7,8] and also extended to
manifolds [17]. Details are given in the next section.
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Empirically, this algorithm is effective at accurately computing
the minimum rank. We demonstrate the effectiveness of our
algorithm by comparing our results to a combinatorial parameter,
the zero-forcing number, which bounds the minimum rank from
below. Our computational results show that our algorithm is
generally close to the theoretical minimum as given by the zero-
forcing number. In fact, these results demonstrate that the zero-
forcing number is generally a good heuristic approximation for
the minimum rank of a graph when the number of vertices is less
than 23. This algorithm is efficient for graphs up to 100 vertices.
Finally, using our algorithm, we provide numerical evidence for
an outstanding conjecture regarding the minimum rank of a graph
and its complement. We provide a mathematical foundation that
the algorithm does converge when the initial point is sufficiently
close to a solution under mild conditions.

This paper is organized as follows. In the next section, we give
the preliminaries and definitions. Within Section 3, we present
our algorithm and demonstrate its convergence in Section 4. In
Section 5, we discuss the computational results of the algorithm
and compare them to that of zero-forcing, and in the next section
we give numerical evidence to the minimum rank conjecture.
Finally, in Section 7, we discuss our conclusions and future work.

2. Preliminaries

Let G = (V , E) be a graph with n vertices and m edges. For
our purposes, we use simple graphs with no loops or multiedges.
The adjacency matrix of G, denoted A, is the n × n symmetric
matrix indexed by the vertices where Aij = 1 whenever {i, j} is
an edge and= 0 otherwise. A weighted adjacency matrix of G is a
symmetric n× n matrix, W, such that for i ≠ j, Wij ≠ 0 whenever
{i, j} is an edge and = 0 otherwise, and the diagonal entries may
take any values which may be different from one another. Note
that in our case, we specifically disallow zero weights but allow
negative weights. A matrix that is a weighted adjacency matrix of
G is said be a representation of G.

Given a graph G, the minimum rank problem seeks to minimize
rank(W) over all weighted adjacency matrices of G. The optimum
value is called theminimum rank of G, denotedmr(G). We will use
amr(G) for the output value of our approximation algorithm.

It will be necessary to formulate this problem in terms of
manifolds. For our purposes, we assume allmanifolds to be smooth
and differentiable. We consider the space of n × n symmetric
matrices, Rn×n

sym . For the graph G, we define the manifold S(G) to be
the affine subspace inRn×n

sym consisting of all representations of G. In
particular,S(G) is an affine subspacewith select subspaces of lower
dimension removed. We will let S∗(G) denote the affine subspace
corresponding to the topological closure of S(G); that is, S∗(G) is
the set of all representations of G of all subgraphs of G. For k ≤ n,
let Rn(k) be the manifold of all real-symmetric n × n matrices of
rank at most k. In which case, the minimum rank problem can be
formulated as follows:

mr(G) := min k s.t. S(G) ∩Rn(k) ≠ ∅.

Additionally, two manifolds M, N within Rn×n
sym intersect trans-

versely at x ∈M∩N if the tangent spaces, TM, TN , have TM+TN =

Rn×n
sym .
The main tool we use in our algorithm is the method of alternat-

ing projections pioneered by von Neumann [26]:

Proposition 1 (von Neumann, See for Example [7]). Let S and T
be closed subspaces of a Hilbert space, H , and let PS and PT be the
orthogonal projection operators onto S and T respectively. Then, for
any point h ∈ H ,

lim
ℓ→∞

(PSPT )
ℓh ∈ S ∩ T and lim

ℓ→∞
(PTPS)

ℓh ∈ S ∩ T .

That is, one can find an intersection point of two subspaces
by alternating projections onto the two subspaces. This concept
has since been perfected by others [7,8] and also extended to
manifolds [17]. In particular, given a metric space S with distance
metric d and two compact sets S, T ⊂ S, an orthogonal projection
from S to T is a function P : S → T such that for any s ∈ S,
P(s) = argmint∈T d(s, t). It should be noted that the minimum
exists by compactness, and also, an orthogonal projection fromone
set to another is not necessarily unique.

LetM = QΛQT be the real orthonormal diagonalization of a real
symmetric matrix M where Λ is a diagonal matrix of eigenvalues
λ1, λ2, . . . , λn with |λ1| ≥ |λ2| ≥ · · · ≥ |λn| and Q is a
matrix of (orthogonal) eigenvectors in an order corresponding to
the eigenvalues in Λ. A k-rank approximation ofM isMk = QΛkQT

where Λk is a diagonal matrix with entries λ1, λ2, . . . , λk, 0, . . . 0.
Note that a k-rank approximation is unique (up to a sign on the
columns of Q) wheneverM has distinct eigenvalues.

We will use I to denote the identity matrix. Also, for two
matrices with the same dimensions, we let A◦M denote the entry-
wise (or ‘‘Hadamard’’) product. That is, (A ◦M)ij = Aij ·Mij.

For matrix norms we will focus upon the Frobenius norm,
denoted, ∥M∥F , which is given by: ∥M∥2F =


i,j M

2
i,j. Alternatively,

∥M∥2F =


k σ 2
k where σk are the singular values of M. For more

information, see [15].
In the later part of our paper, we compare our results with the

zero-forcing number of a graph. The zero-forcing process originally
given in [2] is defined as follows. Start with a set of vertices
S ⊂ V (G) as colored and all other vertices uncolored. If a colored
vertex s has all but one of its neighbors colored, then the uncolored
neighbor, t , changes from uncolored to colored. In which case, we
say s forces t . This forcing process continues until all of the vertices
of the graph become colored or no more vertices can force. If an
initial set S eventually forces the entire graph under this forcing
process, S is called a forcing set. The zero-forcing number, Z(G), is
the size of the smallest forcing set of the graph.

The importance of Z(G) in relation to the minimum rank is the
following:

Proposition 2 (AIM Special Work Group [2]).

mr(G) ≥ n− Z(G).

Later in our paper, we will utilize the previous proposition in
order to evaluate our algorithm for the minimum rank, thereby
providing a spread of possible values formr(G).

3. The algorithm

The main idea of the algorithm is to alternate between setting
B← B ◦ (A + I) (zeroing out entries) and setting B← Bk (taking
the k-rank approximation of B) sufficiently many times. Hence,
after each step B is either a k-rank matrix or a representation of
G (or a subgraph). Note, that the step B ← B ◦ (A + I) does not
turn the matrix B into a representation of G, as it only zeros out
entries required to be zero. Rather, it only guarantees that B is a
representation of a subgraph ofG (which could beG itself). Hence, if
the algorithm converges, it should converge to amatrix that is both
rank k and a representation of G or a subgraph of G. Afterwards,
it is checked if B ∈ S(G) (that is, if B is a matrix representation
of G). If B ∈ S(G), then B is a k-rank representation of G, and
hence, the algorithm will lower k in order to find a representation
with lower rank. Otherwise, the algorithm with raise k in order
to find a representation at all. By using a bisection method with
regard to k, the algorithmwill return the least possible k for which
it can find a representation. The main benefit of the algorithm
is that not only will it return the minimum rank k it finds, but
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