
Operations Research Letters 44 (2016) 267–272

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Improved bound on the worst case complexity of Policy Iteration
Romain Hollanders ∗, Balázs Gerencsér, Jean-Charles Delvenne 1, Raphaël M. Jungers 2

Euler Building, Avenue G. Lemaître 4, 1348 Louvain-la-Neuve, Belgium

a r t i c l e i n f o

Article history:
Received 19 May 2015
Received in revised form
26 January 2016
Accepted 26 January 2016
Available online 8 February 2016

Keywords:
Policy Iteration
Complexity
Markov Decision Process
Acyclic Unique Sink Orientation

a b s t r a c t

Solving Markov Decision Processes is a recurrent task in engineering which can be performed efficiently
in practice using the Policy Iteration algorithm. Regarding its complexity, both lower and upper bounds
are known to be exponential (but far apart) in the size of the problem. In this work, we provide the first
improvement over the now standard upper bound from Mansour and Singh (1999). We also show that
this bound is tight for a natural relaxation of the problem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Markov Decision Processes (MDPs) have been found to be a
powerful modeling tool for the decision problems that arise daily
in various domains of engineering such as control, finance, queuing
systems, PageRank optimization, and many more (see [23] for a
more exhaustive list).

MDPs are described from a set of n states in which a system
can be. When being in a state, the controller of the system must
choose an available action in that state, each of which induces a
reward and moves the system to another state according to given
transition probabilities. In this work, we assume that the number
of actions per state is bounded by a constant k. A policy refers
to the stationary choice of one action in every state. Choosing a
policy implies fixing a dynamics that corresponds to a Markov
chain. Given any policy (there are at most kn of them), we can
associate a value to each state of the MDP that corresponds to
the infinite-horizon expected reward of an agent starting in that
state. By solving anMDP,wemean providing an optimal policy that
maximizes the value of every state. Depending on the application, a
total-, discounted- or average-reward criterion may be best suited

∗ Corresponding author. Tel.: +32 0 473 66 25 97.
E-mail addresses: romain.hollanders@gmail.com (R. Hollanders),

balazs.gerencser@uclouvain.be (B. Gerencsér),
jean-charles.delvenne@uclouvain.be (J.-C. Delvenne),
raphael.jungers@uclouvain.be (R.M. Jungers).
1 CORE and NAXYS fellow.
2 F.R.S./FNRS Research Associate.

to define the value function. In every case, an optimal policy always
exists. See, e.g., [20] for an in-depth study of MDPs.

A practically efficient way of finding the optimal policy for an
MDP is to use Policy Iteration (PI). Starting from an initial policy
π0, i = 0, this simple iterative scheme repeatedly computes the
value of πi at every state and greedily modifies this policy using its
evaluation to obtain the next iterate πi+1. The modification always
ensures that the value of πi+1 improves on that of πi at every
state. The process is then repeateduntil convergence to the optimal
policy π∗ in a finite number of steps (obviously at most kn steps—
the maximum number of policies). We refer to the ordered set of
explored policies as the PI-sequence. A more precise statement of
the algorithm as well as some important properties are described
in Section 2.

Every iteration of the algorithmcan be performed in polynomial
time and its number of steps has been shown by Ye to be strongly
polynomial in the important particular case of discounted-reward
MDPs with a fixed discount rate [24] (the bound in this result
was later improved in [14,21]). Building on this result, similar con-
clusions were obtained for other special cases of MDPs [19,4,1,6].
Ye’s result does however not extend to Value Iteration andModified
Policy Iteration, the two standard and closely related competitors of
PI [5,7].

In contrast to these positive results, the number of iterations
of PI can be exponentially large in general. Based on the work of
Friedmann on Parity Games [8], PI has been shown to require at
least Ω(2n/7) steps to converge in the worst case for the total-
and average-reward criteria [3] and for the discounted-reward
criterion [17]. Friedmann’s result was also a major milestone for
the study of the Simplex algorithm for Linear Programming as it
led to exponential lower bounds for some critical pivoting rules

http://dx.doi.org/10.1016/j.orl.2016.01.010
0167-6377/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2016.01.010
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2016.01.010&domain=pdf
mailto:romain.hollanders@gmail.com
mailto:balazs.gerencser@uclouvain.be
mailto:jean-charles.delvenne@uclouvain.be
mailto:raphael.jungers@uclouvain.be
http://dx.doi.org/10.1016/j.orl.2016.01.010

268 R. Hollanders et al. / Operations Research Letters 44 (2016) 267–272

[9,10]. On the other hand, the best known upper bound for PI to
date was due toMansour and Singhwith a 13 · k

n

n steps bound [18].
In Theorem 1, Section 3, we provide the first improvement in
fifteen years to this bound, namely k

k−1 ·
kn
n + o

 kn
n

.

To obtain our bound, we use a number of properties of PI-
sequences. It is of natural interest to explore which of these
properties could be further exploited to improve the bound and
which ones cannot. It turns out that the properties we actually use
to obtain our upper bound cannot lead to further improvements,
that is, they are ‘‘fully exploited’’. To formally prove this fact, we
introduce in Section 2 the notion of pseudo-PI-sequence to describe
any sequence of policies satisfying only the properties that we use
to obtain our bound from Theorem 1. We then show in Theorem 2,
Section 3, that there always exists a pseudo-PI-sequence whose
size matches the upper bound of Theorem 1. This confirms that
the bound is sharp for pseudo-PI-sequences. Therefore, obtaining
new bounds on PI-sequences would require exploiting stronger
properties.

An attempt in that direction – based on the so-called Order-
Regular matrices – has beenproposed in [13] anddeveloped in [12].
Based on numerical evidence, Hansen and Zwick conjectured that
the number of iterations of PI for k = 2 should be bounded by
Fn+2 (= O(1.618n)), the (n + 2)nd Fibonacci number. If true, this
bound would significantly improve ours.

As a final remark, note that our analysis also fits in the
frameworks of the Strategy Iteration algorithm to solve 2-Player
Turn-Based Stochastic Games [15] – a 2-player generalization of
MDPs – and of the Bottom Antipodal algorithm to find the sink of
an Acyclic Unique Sink Orientation of a grid [22,11]. Our bound
can also be adapted for these algorithms. It is to be noted that no
polynomial-time algorithm is known for either case, which is an
additional incentive to improve the exponential bounds (although
the strongly polynomial time bound from Ye [24] extends to
2TBSGs as well when a fixed discount factor is chosen [14]).

2. Problem statement and preliminary results

Definition 1 (Markov Decision Process). Let S = {1, . . . , n} be a set
of n states and As be a set of k actions available for state s ∈ S.
To each choice of an action corresponds a transition probability
distribution for the next state to visit as well as a reward. For
simplicity, we use a common numbering for the actions, that is,
As , A = {1, . . . , k} for all s ∈ S. With this notation, for every
pair (s, a) ∈ S×A, the transition probability and reward functions
are uniquely defined. Let a policy π ∈ {1, . . . , k}n be the stationary
choice of one action for every state. A policy induces a transition
probability matrix Pπ corresponding to some Markov chain and a
reward vector rπ . We may ask how rewarding a policy π is in the
long run. This is represented by its value vector vπ

∈ Rn whose sth
entry corresponds to the long term reward obtained from starting
in state s and following the policy π thereafter. It can be computed
by solving a system whose definition depends on the problem
studied. For instance, for the standard infinite-horizon discounted-
reward criterionwhere the aim is to maximize the discounted sum
of rewards, vπ is obtained by:

vπ
=

∞
i=0

(γ Pπ)
i rπ
= (I − γ Pπ)−1 rπ ,

where 0 ≤ γ < 1 is the discount factor that ensures that (I−γ Pπ)
is non-singular. However, in this work, the bounds that we derive
hold for the three classical reward criteria, namely the discounted-
, total- and average-reward criteria. For the total-reward criterion,
we assume the existence of a terminal – reward free – state thatwe
assume to be reachable with any policy, from any starting state.
For the average-reward criterion, we need to extend the notion
of value vectors to valuations as defined in [13, Section 2.3] or

[20, Section 8.2.1]. By solving anMDP,wemean finding the optimal
policy π∗ such that for any other policy π, vπ∗

≥ vπ , that is,
vπ∗(s) ≥ vπ (s) for all states s. The existence of such a policy is
guaranteed [2].

Definition 2 (Domination).Given twopoliciesπ andπ ′, if vπ ′(s) ≥
vπ (s) for all states s ∈ S, then we say that π ′ dominates π and we
write π ′ ≽ π . If moreover vπ ′(s) > vπ (s) for at least one state,
then the domination is strict and we write π ′ ≻ π . An analogous
definition of domination can be obtained for valuations with the
average reward criterion [13, Section 2.3].

Definition 3 (Switching). LetU be a collection of state–action pairs
(s, a). We say that U is well-defined if it contains every state s ∈ S
at most once. In that case, we define π ′ = π ⊕ U to be the policy
obtained from π by switching the action π(s) to a for each (s, a)-
pair in U .

Definition 4 (Improvement Set).We define the improvement set of
a policy π as:

Tπ
=

(s, a) | π ⊕ {(s, a)} ≻ π

,

and the set of improvement states Sπ of π as the set of states that
appear in Tπ .

Proposition 1. Let π be a policy and U ≠ ∅ be any well-defined
subset of its improvement set Tπ . Then π ⊕ U ≻ π .

Proposition 2. For a given policy π , if Tπ
= ∅, then π is optimal.

Proofs of Propositions 1 and 2 can be found, e.g., in [13]; see
Theorems 2.2.12, 2.3.9 and 2.4.6 for the discounted-, average- and
total-reward criteria, respectively. Alternative statements can also
be found in [20,2]. Based on Propositions 1 and 2 we may define
the Policy Iteration algorithm to find the optimal policy. In the rest
of our analysis, we only assume that these two propositions hold.

Definition 5 (Policy Iteration). Algorithm 1 describes Policy Itera-
tion (PI). The standard way of choosing Ui ⊆ Tπi is the greedy up-
date rule, namely choose anyUi withmaximal cardinality |Sπi |. We
refer to the corresponding algorithm as Greedy PI, which is the fo-
cus of our work.

Initialization: π0, i = 0
while Tπi ≠ ∅ do

Select a non-empty and well-defined Ui ⊆ Tπi

πi+1 = πi ⊕ Ui
i← i+ 1

end
return πi

Algorithm 1: Policy Iteration

Definition 6 (Comparable). We say that two policies π and π ′ are
comparable if either π ≼ π ′ or π ≽ π ′. We call two policies
neighbors if they differ in only one state. Neighbors are always
comparable (Lemma 3 in [18]).

Definition 7 (Partial Order). For a givenMDP, we consider the par-
tial order PO of the policies defined by the domination relation.
A set of policies π (1), . . . , π (k) is called a sequence if π (1)

≼ · · ·

≼ π (k).

Definition 8 (PI-sequence). We refer to the sequence of policies
π0, . . . , πm−1 explored by greedy PI as a PI-sequence of lengthm.

We aim to solve the following problem.

Problem 1. Find the longest possible PI-sequence.

Download English Version:

https://daneshyari.com/en/article/1142229

Download Persian Version:

https://daneshyari.com/article/1142229

Daneshyari.com

https://daneshyari.com/en/article/1142229
https://daneshyari.com/article/1142229
https://daneshyari.com

