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a b s t r a c t

We show that, under reasonable assumptions, the performance of the jackknife, classical and batchmeans
estimators for the estimation of quantiles of the steady-state distribution exhibit similar properties as in
the case of the estimation of a nonlinear function of a steady-state mean. We present some experimental
results from the simulation of the waiting time in queue for an M/M/1 system to confirm our theoretical
results.
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1. Introduction

Most of the literature in simulation output analysis has been
devoted to the estimation of performance measures that are ex-
pressed in terms of expected values or long-run averages. In many
applications, however, a quantile can be a performance measure
of primary interest (e.g., a reorder point for a given service level in
inventory management).

Let {Xi : i = 0, 1, . . .} be a stochastic process (with state space
E ⊆ ℜ) representing the output of a stochastic simulation. We as-
sume that the process has a steady-state distribution, i.e.,

Xn ⇒ X, (1)

where X is a random variable with cumulative distribution func-
tion (c.d.f.) F , and ‘‘⇒’’ denotes weak convergence (as n → ∞ un-
less specified). For 0 < p < 1, we are interested in the estimation
of the p-quantile of X defined by

α = Tp (F) = inf {x : F (x) ≥ p} , (2)

from the output X1, . . . , Xn of a stochastic simulation. The point es-
timators that we discuss in this paper require that the simulation
output be divided into b non-overlapping batches of size m (we
assume that n = bm), so that we consider three different point
estimators for α.
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Classical estimator:

θ̂1 (n) = Tp (Fn) , (3)

where Fn is the empirical distribution function defined by Fn (x)
def
=

1
n

n
i=1 I [Xi ≤ x] , x ∈ ℜ, Tp is defined in (2) and I denotes the in-

dicator function.
Batch means estimator:

θ̂2 (n) =
1
b

b
j=1

α̂j (n) , (4)

where, for j = 1, 2, . . . , b, α̂j (n) = Tp

Fjn


, and Fjn (x)

def
=

1
mjm

i=(j−1)m+1 I [Xi ≤ x] is the empirical distribution function corre-
sponding to batch j.

Jackknife estimator:

θ̂3 (n) =
1
b

b
j=1

Jbj , (5)

where, for j = 1, 2, . . . , b, Jbj = bθ̂1 (n) − (b − 1) α̂
J
j (n) , α̂

J
j (n) =

Tp

F J
jn


, F J

jn (x)
def
=

1
(b−1)m


i∈Aj

I [Xi ≤ x], and Aj = {1, . . . , n} −

{m (j − 1) + 1, . . . ,m (j − 1) + m}.
The variability of these point estimators can be assessed by

computing the sample standard deviation

Sb (n) =

 1
b − 1

b
j=1


α̂j (n) − θ̂2 (n)

2
, (6)
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where α̂j (n) and θ̂2 (n) are defined in (4). An approximate
100 (1 − α)% confidence interval (CI) for α is given by
θ̂ (n) − t(b−1,α)b−1/2Sb(n), θ̂ (n) + t(b−1,α)b−1/2Sb(n)


, (7)

where t(b−1,α) is the (1 − α/2)-quantile of a Student-t distribution
with (b − 1) degrees of freedom, Sb (n) is defined in (6), and θ̂ (n)
can be any of the point estimators defined in (3)–(5). In the steady-
state estimation context, the asymptotic validity of a CI in the
form of (7) usually requires a stronger version of a Central Limit
Theorem (CLT) for θ̂ (n) (see Assumption 1), and the corresponding
CLT implies that n1/2Sb (n) ⇒ 0, so that the half width of (7) tends
to zero at a rate o


n−1/2


.

If we assume that F is differentiable at α, with F ′ (α) > 0, the
asymptotic validity of the CI defined in (7) can be verified using
Bahadur’s representation for quantiles (see, e.g., [1,7]) for each
batch

α̂j (n) − α =
p − Fjn (α)

F ′ (α)
+ Rj (n) , (8)

for j = 1, . . . , b, where Fjn and α̂j (n) are defined in (4).
As shown in [5], for the cases θ̂ (n) = θ̂1 (n) or θ̂ (n) = θ̂2 (n),

the following two assumptions are sufficient to verify the asymp-
totic validity of the CI defined in (7). Set

Zn (t) =
n−1/2

F ′ (α)

⌊nt⌋
j=1


p − I


Xj ≤ α


, (9)

for 0 ≤ t ≤ 1.

Assumption 1. There exists a constant σ0 > 0 such that for any
initial distribution v0, Zn ⇒ σ0B, in D [0, 1], the space of ℜ-valued
functions on [0, 1] that are right continuous and have left limits,
where Zn is defined in (9) and B denotes a standard Brownian
motion on [0, 1].

Assumption 2. The residuals Rj (n) defined in Eq. (8) satisfy
m1/2Rj (n) ⇒ 0, j = 1, . . . , b (where n = mb).

As shown in [4], for the case θ̂ (n) = θ̂3 (n) the asymptotic validity
of the CI defined in (7) can be verified by adding the next Assump-
tion. Set

α̂
J
j (n) − α =

p − F J
jn (α)

F ′ (α)
+ RJ

j (n) , (10)

Assumption 3. The residuals RJ
j (n)defined in (10) satisfy (n −

m)1/2RJ
j (n) ⇒ 0, j = 1, . . . , b.

Assumption 1 is called a Functional Central Limit Theorem (FCLT)
and is a stronger assumption than a Central Limit Theorem.
Conditions under which a FCLT holds for a Markov chain (MC)
are provided in Theorem 4.1 of [3]. Also, conditions under which
Assumption 2 holds for a MC are provided in [5], and the same
conditions can be used to verify Assumption 3.

We remark that the CI defined in (7) is a ‘‘cancellation proce-
dure’’ in the sense that we are not trying to (consistently) estimate
the asymptotic variance of the estimators, since it may be a diffi-
cult task even for the steady-state mean estimation problem (see,
e.g., [2]). In order to prove the validity of the CI defined in (7) we
cancel out the variance of the estimators in a Central Limit Theorem
(see [4,5] for details). Also, we are not discussing data-driven pro-
cedures to choose the batch size m, since we believe the methods
discussed in [8] can be extended to the case of steady-state quantile
estimation. We remark that, in the mentioned paper, the authors

propose a sample size large enough to ensure that lack of normal-
ity and independence among batch estimators are negligible, and
the same ideas can be used for the case of quantile estimation.

In the next section we impose suitable assumptions on the
convergence rate of the remainder terms of (8) and (10), and show
that, for a sufficiently large run length, the bias of the jackknife
estimator is smaller than the bias of the classical estimator, and
the bias of the batch means estimator is larger than the bias of the
classical estimator. In Section 3 we present experimental results
that confirm our theoretical results. Our experiments also show
that all three point estimators exhibit a similar performance from
the point of view of their mean squared error (mse).

2. Main results

In order to state our results, we will consider the following
assumption.

Assumption 4. There exist constants K ≠ 0 and β (1/2 < β < 1)
such that the residuals Rj (n) and RJ

j (n) defined in (8) and (10), re-
spectively, satisfymβ log (m) Rj (n) ⇒ K , and (n − m)β log (n − m)

RJ
j (n) ⇒ K , j = 1, . . . , b.

Note that Assumption 4 implies Assumptions 2 and 3, and is amore
precise statement on the rate of convergence of the remainder
terms. Conditions under which Assumption 4 is satisfied are
provided in [10] (see also [11,9,7]). Let us denote

B (n, α) =


p − E [Fn (α)]

F ′ (α)


. (11)

Proposition 1. Suppose that F is differentiable at p, and the stochas-
tic process {Xi : i = 0, 1, . . .} satisfies Assumptions 3 and 4. Let the
number of batches b be fixed with n = mb. If there exists n0 > 0 such
that


mβ log (m) Rjn : n ≥ n0


and


(n − m)β log (n − m) RJ

jn : n ≥

n0


are uniformly integrable, then

Bias

θ̂1 (n)


= B (n, α) +

K
nβ log (n)

+ o


nβ log (n)
−1


, (12)

Bias

θ̂2 (n)


= B (n, α) +

bβK
nβ log (m)

+ o


nβ log (n)
−1


, (13)

and

Bias

θ̂3 (n)


= B (n, α) +

a(b, β)K
nβ log (n)

+ o


nβ log (n)
−1


, (14)

as n → ∞, where a(b, β) = b

1 − (1 − 1/b)1−β


and B (n, α) is

defined in (11).

The proof of Proposition 1 is provided in the Appendix. Note that
I [Xi ≤ α] may be biased due to an initial transient. However, if the
process {Xi : i = 0, 1, . . .} is stationary and the initial distribution
is the steady-state distribution, we have E [I [Xi ≤ α]] = p, so that
B (n, α) = 0. In a typical situation, the first term of Eqs. (11)–(13)
converges to zero faster than the second term. For example, when
Xi = g (Yi), where Y = {Yi : i = 0, 1, . . .} is a Markov chain (MC)
with state-space E ⊆ ℜ

d, a sufficient condition (see [5]) for the
validity of the CI defined in (7) is that the MC be geometrically
ergodic, i.e., there exist ρ < 1 and a real-valued function h such
that:

dk (y) ≤ h (y) ρ j, (15)
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