ELSEVIER

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Improved semidefinite approximation bounds for nonconvex nonhomogeneous quadratic optimization with ellipsoid constraints

Yong Hsia a, Shu Wang a, Zi Xu b,*

- ^a State Key Laboratory of Software Development Environment, LMIB of the Ministry of Education, School of Mathematics and System Sciences, Beihang University, Beijing, 100191, PR China
- ^b Department of Mathematics, Shanghai University, Shanghai 200444, PR China

ARTICLE INFO

Article history: Received 30 September 2014 Received in revised form 6 May 2015 Accepted 6 May 2015 Available online 14 May 2015

Keywords:

Quadratic constrained quadratic programming Semidefinite programming relaxation Approximation algorithm

ABSTRACT

We study the problem of approximating nonconvex quadratic optimization with ellipsoid constraints (ECQP) and establish a new semidefinite approximation bound, which greatly improves Tseng's result (Tseng, 2003). As an application, we strictly improve the approximation ratio for the assignment-polytope constrained quadratic program. Finally, based on a randomized algorithm, we obtain a new approximation bound for (ECQP) which is sharp in the order of the number of the ellipsoid constraints.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following nonconvex quadratic optimization problem with ellipsoid constraints:

$$\min_{x \in \mathbb{R}^n} f(x) = x^T A x + 2b^T x$$

$$\text{s.t.} \quad ||F^k x + g^k||^2 \le 1, \quad k = 1, \dots, m,$$

$$(ECQP)$$

where $A \in \mathbb{R}^{n \times n}$ symmetric, $F^k \in \mathbb{R}^{r^k \times n}$, $b \in \mathbb{R}^n$, $g^k \in \mathbb{R}^{r^k}$, $r^k \geq 1$ and $\|\cdot\|$ denotes the Euclidean norm. Generally, this problem is NP-hard. To avoid trivial cases, we assume the Slater condition holds, i.e., the feasible region of (ECQP) has an interior point. With a proper transformation if necessary, we first make the following assumption.

Assumption 1.1. The origin 0 is in the interior of the feasible region of (ECQP), that is,

$$||g^k|| < 1, \quad k = 1, \dots, m.$$

E-mail addresses: dearyxia@gmail.com (Y. Hsia), wangshu.0130@163.com (S. Wang), xuzi@shu.edu.cn (Z. Xu).

(ECQP) can be homogenized as

$$\min_{\mathbf{x} \in \mathbb{R}^{n+1}} \sum_{i=1}^{n+1} \sum_{i=1}^{n+1} B_{ij} x_i x_j \tag{1}$$

s.t.
$$\sum_{i=1}^{n+1} \sum_{i=1}^{n+1} B_{ij}^k x_i x_j \le 0, \quad k = 1, \dots, m,$$
 (2)

$$x_{n+1}=1, (3)$$

where

$$B = \begin{bmatrix} A & b \\ b^T & 0 \end{bmatrix},$$

$$B^k = \begin{bmatrix} (F^k)^T F^k & (F^k)^T g^k \\ (g^k)^T F^k & \|g^k\|^2 - 1 \end{bmatrix}, \quad k = 1, \dots, m.$$

By letting $X = xx^T$ and dropping the rank one constraint, the semidefinite programming relaxation of (ECQP) can be written as follows.

min
$$B \bullet X$$

s.t. $B^k \bullet X \le 0$, $k = 1, ..., m$, (SDP)
 $X_{n+1,n+1} = 1$, $X \succeq 0$, $X \in \mathbb{R}^{(n+1)\times(n+1)}$.

In addition, we need to make the following assumption for (SDP) throughout this paper.

^{*} Corresponding author.

Assumption 1.2. (SDP) has an optimal solution X^* .

Let $v(\cdot)$ denote the optimal value of problem (\cdot) . Obviously, we have

$$v(SDP) \le v(ECQP) \le f(0) = 0,$$

where the equality of the first inequality holds if and only if rank $(X^*) = 1$ with X^* being an optimal solution of (SDP), and the second inequality follows from Assumption 1.1. Throughout this paper, we call τ the approximation ratio for the minimization problem (ECQP) if

$$v(ECOP) < \tau \cdot v(SDP)$$
.

The following theorem establishes an approximation bound for (ECQP).

Theorem 1.3 ([11]). Under Assumptions 1.1 and 1.2, a feasible solution x for (ECQP) can be generated in polynomial time satisfying

$$f(x) \le \frac{(1-\gamma)^2}{(\sqrt{m}+\gamma)^2} \cdot v(\text{SDP}),\tag{4}$$

where $\gamma := \max_{k=1,...,m} \|g^k\|$.

When b = 0 and $g^k = 0$ for k = 1, ..., m and $\sum_{k=1}^m (F^k)^T F^k$ is positive definite, it was shown in [6] that a feasible solution x can be generated from (SDP) satisfying

$$f(x) \le \frac{1}{2\ln(2(m+1)\mu)} \cdot v(\text{SDP}) \tag{5}$$

with $\mu := \min\{m+1, \max_{k=1,...,m} \operatorname{rank}((F^k)^T F^k)\}$. In particular, when (ECQP) has a ball constraint, $\mu = \min\{m+1, n\}$. Also for this special case, Ye and Zhang (Corollary 2.6 in [13]) showed that a feasible solution x satisfying

$$f(x) \le \frac{1}{\min\{m-1, n\}} \cdot v(SDP),$$

can be found in polynomial time. For more detailed results related to this special case, we refer to the survey paper [5]. When $A \leq 0$, b=0 but allowing nonzero $\|g^k\|$ for $k=1,\ldots,m$, Ye showed in [12] that a feasible solution \widetilde{x} can be randomly generated such that

$$E(\widetilde{\mathbf{x}}^T A \widetilde{\mathbf{x}}) \le \frac{(1 - \max_{k} \|\mathbf{g}^k\|)^2}{4 \ln(4mn \cdot \max_{k} (\operatorname{rank}((F^k)^T F^k)))} \cdot v(\text{SDP}). \tag{6}$$

To be mentioned, the n in the denominator should be n+1 according to Ye's proof in [12].

By directly applying the rank reduction result of Shapiro–Barvinok–Pataki (see Theorem 2.1), we can see that the denominators of (5) and (6) can be strengthened to $2\ln(2(m+1) \cdot \min\{\sqrt{2m} + 1, \max_k \operatorname{rank}((F^k)^T F^k)\})$ and $4\ln(4m \cdot \min\{\sqrt{2m}, n+1\} \cdot \min\{\sqrt{2m}, \max_k \operatorname{rank}((F^k)^T F^k)\})$, respectively, see Theorem 1.1 in [9] and the following remarks. However, the same approach cannot be trivially applied to improve the approximation ratio for (ECQP).

In Section 2 of this paper, based on a new analysis, we establish a sharper semidefinite approximation bound for (ECQP). More precisely, from an optimal solution of (SDP), a feasible solution x for (ECQP) can be generated, which satisfies that

$$f(x) \le \frac{(1-\gamma)^2}{\left(\sqrt{\tilde{r}} + \gamma\right)^2} \cdot v(SDP),$$

where $\widetilde{r} = \min\left\{ \left\lceil \frac{\sqrt{8m+17}-3}{2} \right\rceil, n+1 \right\}$ and γ is defined the same as in Theorem 1.3. This bound improves the result shown in Theorem 1.3 in the order of m, i.e., from O(1/m) to $O(1/\sqrt{m})$.

As an application of (ECQP), in Section 3, we consider the assignment-polytope constrained QP problem (AQP) and show a strictly improved approximation bound compared to Fu et al.'s result [3]. Although, it is claimed in [12] that this ratio can be improved from $1/O(n^3)$ to $1/O(n^2 \log(4n^4))$, the analysis technique therein only works for a very special case of (AQP).

In Section 4, by a similar randomized algorithm proposed in Nemirovski et al.'s paper [6], we give a further improved approximation bound for (ECQP). A feasible solution x for (ECQP) can be generated, which satisfies that

$$f(x) \le \frac{(1-\gamma)^2}{\left(\sqrt{M}+\gamma\right)^2} \cdot v(\text{SDP}),$$

where $M=2\ln(100m\cdot\min\{\left\lceil\frac{\sqrt{8m+17}-3}{2}\right\rceil,\max_{k=1,\dots,m}(\mathrm{rank}(A^k))\})$ and γ is defined the same as in Theorem 1.3. This bound improves the result shown in Theorem 1.3 in the order of m, i.e., from O(1/m) to $O(1/\ln m)$. Moreover, the new bound is sharp in the order of m in general.

Notations. Throughout the paper, $A \succeq 0$ stands for the matrix A is positive semidefinite, $A \bullet B = \sum_{i,j=1}^n a_{ij}b_{ij}$ is the inner product of two matrices A, B. $\operatorname{Tr}(X)$ denotes the trace of the matrix X. Let \mathbb{R}^n and S_+^n be the n-dimensional vector space and $n \times n$ positive semidefinite symmetric matrix space, respectively. The notation ":=" denotes "define".

2. Improved approximation bound

In this section, we establish a sharper approximation bound for (ECQP). Before presenting the main result, we first restate the well-known Shapiro–Barvinok–Pataki rank reduction result for (SDP) due to Shapiro [8], Barvinok [1] and Pataki [7].

Theorem 2.1 ([8,1,7]). Let r be a positive integer. Suppose that (SDP) is solvable and

$$m+1 < (r+2)(r+1)/2 - 1.$$
 (7)

Then (SDP) has a solution X^* for which rank $(X^*) \le r$.

It can be easily verified that (7) is equivalent to

$$r \ge \left\lceil \frac{\sqrt{8m+17}-3}{2} \right\rceil := r_0. \tag{8}$$

Moreover, an algorithm called "algorithm RED" is proposed in [2] to find such a solution with rank less than or equal to r_0 . Next we introduce the following rank-1 decomposition theorem proposed by Sturm and Zhang in [10].

Theorem 2.2 ([10]). Let X be a positive semidefinite matrix of rank r. Then, $B \bullet X \le 0$ if and only if there is a rank-one decomposition

$$X = \sum_{i=1}^{r} w_i w_i^T$$

such that $w_i^T B w_i \leq 0$ for i = 1, ..., r.

Let X^* be an optimal solution of (SDP) and r be the rank of X^* . According to Theorem 2.1, we can assume r satisfies (8).

Download English Version:

https://daneshyari.com/en/article/1142243

Download Persian Version:

https://daneshyari.com/article/1142243

Daneshyari.com