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a b s t r a c t

We propose two exact approaches for non-convex quadratic integer minimization subject to linear
constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set.
In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second approach
we penalize exactly the linear constraints. We investigate the connection between both approaches
theoretically. Experimental results show that the penalty approach significantly outperforms CPLEX on
problems with small or medium size variable domains.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We address quadratic integer optimization problems with box
constraints and linear equality constraints,

min q(x) = x⊤Qx + c⊤x
s.t. Ax = b

l ≤ x ≤ u
x ∈ Zn,

(1)

where Q ∈ Rn×n is assumed to be symmetric but not necessarily
positive semidefinite, c ∈ Rn, and w.l.o.g. A ∈ Zm×n and b ∈ Zm.
Moreover, we may assume l < u and l, u ∈ Zn. Problems of this
type arise, e.g., in quadratic min cost flow problems, where the lin-
ear equations model flow conservation, l = 0 and u represents
edge capacities. Note that we can also handle linear inequalities
in (1) by simply introducing slack variables.

Problems of type (1) are very hard to solve in theory and in prac-
tice. In general, the problem is NP-hard both due to the integrality
constraints and due to the non-convexity of the objective function.
Few exact algorithms have been proposed in the literature so far,
most of them based on either linearization or convexification [1,9]
or on SDP-relaxations [3].
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For the variant of (1) containing only box constraints, but no
other linear constraints, Buchheim et al. [2] recently proposed a
branch-and-bound algorithm based on ellipsoidal relaxations of
the feasible box. More precisely, a suitable ellipsoid E contain-
ing [l, u] is determined and q(x) is minimized over x ∈ E.

The latter problem is known as the trust region subproblem
[4,6,8] and can be solved efficiently, thus yielding a lower bound
in our context. Besides many other improvements, this branch-
and-bound algorithmmostly relies on an intelligent preprocessing
technique that allows to solve the dual of a trust region problem in
each node of the enumeration tree in a very short time, making it
possible to enumerate millions of nodes in less than a minute.

Our aim is to adapt this method to the presence of linear equa-
tions Ax = b. For this, we propose two different, but related ap-
proaches. In the first approach (see Section 2), we intersect the
ellipsoid E with the subspace given by Ax = b. This leads, by con-
sidering an appropriate projection, to a trust region type problem
that, in principle, can still be solved efficiently. In the second ap-
proach (see Section 3), we instead lift the constraints into the ob-
jective function by adding a penalty term M∥Ax − b∥2 drawing
inspiration from the augmented Lagrangians theory [7]. A finite
and computable real value M̄ > 0 exists such that the resulting
quadratic problem with only the simple constraints [l, u] ∩ Zn is
equivalent to (1). Thus the branch-and-bound algorithm defined
in [2] which uses an ellipsoidal relaxation E of the feasible set can
be used in a straightforward way.

In Section 4, we show that the bound obtained from the penalty
approach converges to the bound obtained in the projection
approach when M → ∞. We finally present the results of an
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experimental comparison of the penalty approach with CPLEX, see
Section 5.

2. Projection approach

The first approach we propose for the computation of lower
bounds for Problem (1) is based on the familiar partitioning of x
into basic and non-basic variables xB and xN . Without loss of
generality we assume that rank(A) = m. Let B be a basis of A, then
the equality constraint can be written as BxB + NxN = b; a similar
idea is used, e.g., in [10]. This leads to a k-dimensional trust region
type problem, where k = n − m is the dimension of the kernel of
the matrix A.

LetH be a positive definitematrix that, togetherwith the center
point x0, defines an ellipsoid

E(H) = {x ∈ Rn
| (x − x0)⊤H(x − x0) ≤ 1}

such that [l, u] ⊆ E(H). Consider the following relaxation of our
original problem (1)

min q(x) = x⊤Qx + c⊤x
s.t. Ax = b

x⊤Hx ≤ 1

(2)

where w.l.o.g. we assumed x0 = 0. We show that Problem (2)
can be transformed into a trust-region type problem so that the
branch-and-bound algorithm defined in [2] can be applied. Let us
write vectors and matrices accordingly to the partition induced by
B and N . Thus, the xB variables can be eliminated via substituting

xB = B−1b − B−1NxN
in (2). We obtain

min x⊤

N
QxN +c⊤xN + d

s.t. x⊤

N
HxN +h⊤xN ≤ 1 − b⊤B−⊤HBBB−1b

xN ∈ Rk,

(3)

whereQ = QNN + N⊤B−⊤QBBB−1N − Q⊤

BNB
−1N − N⊤B−⊤QBNc = 2(−N⊤B−⊤QBBB−1

+ QNBB−1)b − (B−1N)⊤cB + cN
d = b⊤B−⊤QBBB−1b + c⊤

B B−1bH = HNN + N⊤B−⊤HBBB−1N − HNBB−1N − N⊤B−⊤HBNh = 2

−N⊤B−⊤HBBB−1

+ HNBB−1 b.
Let

x0N = −
1
2
H−1h

be the center of the ellipsoidal constraint in problem (3). Then we
can rewrite Problem (3) as

min x⊤

N
QxN +c⊤xN + d

s.t. (xN − x0N)⊤H(xN − x0N) ≤ α

xN ∈ Rk,

where

α = 1 − b⊤B−⊤HBBB−1b +
1
4
h⊤H−1h.

Next we consider the transformation z = xN − x0N and obtain the
following problem which is exactly of the desired form

min z⊤Qz +c⊤z +d
s.t. z⊤Hz ≤ α

z ∈ Rk,

(4)

wherec = 2Qx0N +c,d =c⊤x0N + (x0N)⊤Qx0N + d.

This approach can be embedded into the branch-and-bound
procedure proposed in [2], where the enumeration strategy is
depth-first and branching is done by fixing the value of the vari-
ables in a predetermined order. By the latter restriction, we ensure
that the matricesQ andH only depend on the depth of the node in
the branch-and-bound tree, i.e., onwhich variables have been fixed
so far, but not on their values: first, a basis B0 of A can be computed
in the preprocessing phase. By always fixing non-basic variables,
we get at each level ℓ = 0, . . . , n−m that a basis of Aℓ (the reduced
matrix A indexed by only non-fixed variables) is Bℓ

= B0, whereas
Nℓ is obtainedby simply removing columns fromN0.When all non-
basic variables have been fixed to x̄N , then the corresponding node
is a leaf and either x̄B := (Bℓ)−1b − B−1Nℓx̄N ∈ Zm or the node is
infeasible.

Now the matrices Q and H in a given node of the branch-and-
bound tree depend only on Q ℓ,Hℓ, Bℓ, and Nℓ, where Q ℓ and Hℓ

denote the reduced matrices Q and H on level ℓ, which in turn
depend only on the ordering of variables and not on the fixings
of variables and hence they are shared by all the nodes at level
ℓ. This implies that only n different matrices Q ℓ and Hℓ appear in
the entire branch-and-bound tree, so that, similarly to [2], all time-
consuming calculations concerningQ ℓ andHℓ can be performed in
a preprocessing phase.

On the other hand, the construction of problem (4) at every
node of the branch-and-bound tree requires the computation ofc,d,h, and α, which in turn depends on the values at which the
variables have been fixed, as the right hand side term b is affected
by the fixings. These vectors can however be updated quickly in an
incremental fashion.

As a final remark, we want to point out that it is also possible
to use the kernel representation of the equality constraints as {x ∈

Rn
| Ax = b} = {x ∈ Rn

| x = Vy + w, y ∈ Rk
}, where V ∈ Rn×k

is an orthonormal matrix defining a basis for ker(A) and w ∈ Rn

is any vector satisfying Aw = b. By substituting x by Vy + w in
(2) and by further manipulations of the expressions, we get again
a trust region type problem. The main difference between the two
approaches consists in the computations needed to define the trust
region relaxation at each node of the branch-and-bound tree, but
the resulting bounds both agree with (2) and are hence the same.

3. Penalty approach

In the second approach we take inspiration from an old idea
based on Lagrangian relaxation, in which the squared violation of
linear constraints ∥Ax − b∥2 is lifted to the quadratic objective
function (see [7] and references therein). Indeed Poljak et al. [7]
prove the existence of a value M̄ such that problem (1) is equivalent
to

min
x∈X

q(x) + M∥Ax − b∥2 for all M ≥ M̄

wheneverX is a finite set. In the followingweexplain how to obtain
a finite value of M̄ for which this equivalence holds.

More generally, consider the problem

q(x∗) = min q(x) = x⊤Qx + c⊤x
s.t. x ∈ F ∩ X

(5)

where X ⊆ Rn is again a finite set and F ⊆ Rn is arbitrary. Let
dF (x) : Rn

→ R+

0 be a function such that

dF (x) = 0 if x ∈ F ;

dF (x) > 0 otherwise.
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