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a b s t r a c t

This paper studies volatility derivatives such as variance and volatility swaps, options on variance in the
modified constant elasticity of variancemodel using the benchmark approach. The analytical expressions
of pricing formulas for variance swaps are presented. In addition, the numerical solutions for variance
swaps, volatility swaps and options on variance are demonstrated.
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1. Introduction

This paper considers themodified constant elasticity of variance
(MCEV)model, which is an extension to the Black–Scholes–Merton
model and the stylized minimal market model; see [19]. The
standard CEV model was originally introduced by [9]. The main
advantages of using the CEV model are that it can account for the
implied volatility smile and smirk by capturing the leverage effect.

The pricing of different kinds of options under the constant elas-
ticity of variance (CEV) model has provided interesting and chal-
lenging research topics; see e.g. [2,11,17,12,19]. The latter paper
modeled the growth optimal portfolio (GOP) under the real world
probabilitymeasure,where it is referred to as theMCEVmodel. The
current paper will study volatility derivatives under this model.

Since the S&P 500 volatility index VIX was introduced in 1993,
there have been more and more volatility derivatives tradable
on the exchanges or over the counter. The VIX index can be
theoretically interpreted as the standardized risk-neutral expected
realized variance; see [4,7]. Recent literature discussing volatility
derivatives include [13,5,6,16,8].

We will apply the benchmark approach, documented in [19],
which uses the GOP as the numéraire so that the contingent claims
will be priced under the real world probability measure. This
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avoids the restrictive assumption on the existence of an equivalent
risk neutral probability measure. As argued in [19], this measure
seems not to exist for realistic models and does not exist for the
MCEVmodel. In the following, we derive closed-form formulas for
variance swaps under theMCEVmodel and shownumerical results
for volatility derivatives.

2. Volatility derivatives

A variance swap is a forward contract on annualized variance.
Let σ 2

0,T denote the realized annualized variance of the log-returns
of a diversified equity index or related futures over the life of the
contract such that

σ 2
0,T :=

1
T

 T

0
σ 2
u du. (2.1)

Assume that one can trade the underlying futures or index price at
discrete times ti = i∆ for i ∈ {0, 1, . . .} with time step size∆ > 0.
The period ∆ between two successive potential trading times is
typically the length of one day. Sδ∗ti denotes the index price at time
ti for i ∈ {0, 1, 2, . . .}.

Let (Ω,AT ,A,P ) denote the underlying filtered probability
space satisfying usual conditions. Here P is the real world prob-
ability measure and A = (At)t∈[0,T ] the respective filtration. For
simplicity, assume throughout the paper that the interest rate r >
0 is constant. Furthermore,we assume that the index is theGOP Sδ∗t ,
also called benchmark of the market. We call any price or payoff
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denominated in units of the GOP the respective benchmarked
price. We employ in this paper the real world pricing formula,
which provides for a replicable AT̄ -measurable contingent claim
HT̄ with E( |HT̄ |

Sδ∗
T̄

) < ∞ the real world pricing formula

Vt = Sδ∗t E


HT̄

Sδ∗
T̄

At


(2.2)

for all t ∈ [0, T̄ ], T̄ ∈ [0, T ]; see [19].
Let Kv denote the delivery price for realized variance and L the

notional amount of the swap in dollars per annualized variance
point. Then, the payoff of the variance swap at expiration time T
is given by L(σ 2

0,T − Kv).
A volatility swap is a forward contract on annualized volatility.

Let Ks denote the annualized volatility delivery price and L the
notional amount of the swap in dollar per annualized volatility
point. Then, the payoff function of the volatility swap is given by

L(σ0,T − Ks), where σ0,T =


σ 2
0,T .

Additionally, we will consider the payoffs of call options on
variance, defined by (σ 2

0,T − K)+, as well as, the payoffs of put
options on variance, defined by (K−σ 2

0,T )
+, where a+

= max(0, a).

3. Modified constant elasticity of variance model

As shown in [14], theMCEVmodel for the GOP is obtainedwhen
the volatility of the GOP takes the form

|θt | = (Sδ∗t )
a−1ψ, (3.1)

for t ∈ [0,∞) with exponent a ∈ (−∞,∞), a ≠ 1, and scaling
parameter ψ > 0. From [14], recall that the discounted GOP
satisfies the SDE

dSδ∗t =


rSδ∗t + (Sδ∗t )

2a−1ψ2

dt + (Sδ∗t )

aψdW (t), (3.2)

for t ∈ [0, T ]. Now set Xt = (Sδ∗t )2(1−a). Then we have

dXt = k(ϑ − Xt)dt + σ

XtdW (t), (3.3)

where k = −2(1− a)r , ϑ = −
ψ2(3−2a)

2r , σ = 2ψ(1− a). Note that
Xt is a space–time changed squared Bessel process of dimension
δ =

3−2a
1−a ; see [15].

4. Explicit formula for variance swaps

Due to (2.2) the value of a variance swap Vv(t, S
δ∗
t ) at time t = 0

is given by:

Vv(0, S
δ∗
0 ) = Sδ∗0 E


L(σ 2

0,T − Kv)

Sδ∗T


= Sδ∗0 LE


σ 2
0,T

Sδ∗T



− Sδ∗0 LKvE


1

Sδ∗T


. (4.1)

Hence, the evaluation of the price of a variance swap can be

reduced to the problem of calculating the expected value E[
σ 2
0,T

Sδ∗T
]

of the benchmarked realized annualized variance and the zero
coupon bond BT (0, S

δ∗
0 ) = Sδ∗0 E[

1
Sδ∗T

].

As followed from [18], the price of a zero-coupon bond
BT (t, S

δ∗
t ), calculated at time t with maturity T under the given

MCEV model, equals

BT (t, S
δ∗
t ) = e−r(T−t)χ2


ΥT ;

1
1 − a


, (4.2)

Table 4.1
Prices of variance swaps.

Maturities Prices of variance swaps

1/6 1.58587
0.25 1.85638
0.5 2.51737
1 1.83401
1.5 0.89961
2 0.301646

where

ΥT =
2r

|θt |2(1 − a)[1 − exp{−2(1 − a)r(T − t)}]
(4.3)

for t ∈ [0, T ] and χ2(u, ν) = 1−
0( u2 ;

ν
2 )

0( ν2 )
for u ≥ 0 andwhere 0(α)

for α > −1 is the gamma function, and 0(., .) is the incomplete
gamma function; see [19].

Furthermore, we have

E


σ 2
0,T

Sδ∗T


=
ψ2

T
E
 T

0 (S
δ∗
s )

2(a−1)ds

Sδ∗T


=
ψ2

T
E
 T

0
1
Xs
ds

X
1

2(1−a)
T


. (4.4)

Similar to Proposition 8.1 in [8], we can prove:

Lemma 4.1. Let X = {Xt : t ∈ [0, T ]} satisfy the SDE (3.3) and
set β = 1 + m −

1
2(1−a) + ν/2, m =

1
2 (

2kϑ
σ 2 − 1), ν =

2
σ 2

(kϑ −
σ 2

2 )
2 + 2µσ 2, µ > 0 and X0 = x > 0. Then if m >

1
2(1−a) −

ν
2 − 1, we have

E
  T

0
ds
Xs

X
1

2(1−a)
T



= −
d
dµ

1
2νxm

e
−

2kx
σ2(ekT −1)

+kmt


2kekT

(ekT − 1)σ 2

−m+
1

2(1−a)−
ν
2

×


4k2x

σ 4 sinh2  kT
2

ν/2 0

1 + m −

1
2(1−a) +

ν
2


0(1 + ν)

× 1F1


β, 1 + ν,

2kx
σ 2(ekT − 1)


µ=0

. (4.5)

Here the function 1F1(., ., .) is the confluent hypergeometric function,
see [8]. In theworking paper version of the current paper the interested
reader can find an alternative proof to [8].

Now, we give an example for variance swaps. The values for the
parameters of themodel are set to k = 0.052, a =

2
3 ,ϑ = 24.0385,

ψ = 1.5, m =
3
4 , σ = 0.3162, x = 1, L = 1 million dollars and

Kv = 1.
Table 4.1 displays the prices of variance swaps for various

maturities.

5. Options on variance

According to (2.2), the value of a call option on variance at time
zero is given by:

Cv(0, S
δ∗
0 ) = Sδ∗0 E


(σ 2

0,T − K)+

Sδ∗T



= Sδ∗0 E

σ 2
0,T

Sδ∗T
−

K

Sδ∗T

+
. (5.1)
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