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a b s t r a c t

For the nonnegative l1 matrix/tensor sparse decomposition problem, we derive a threshold bound for the
parameters beyondwhich all the decomposition factors are zero. The obtained result provides a guideline
on selection for l1 regularization parameters and extends the corresponding result on Lasso optimization
problem.
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1. Introduction

Obtaining a low-rank matrix from a given multi-dimensional
data is a classical feature extraction process in data mining,
which is usually formulated as a low-rank matrix decomposi-
tion(approximation) problem [4]. For example, for a set of n-
dimensional observations, principal component analysis (PCA)
amounts to computing the singular decomposition of the data ma-
trix and projecting the n-dimensional data along several principal
orthogonal eigenvectors [9]. While, the low-rank tensor decom-
position(approximation) based on multi-linear algebra like CAN-
DECOMP/PARAFAC (CP) and Tucker models [4] provide a unified
framework for higher-order data analysis [4,7].

It should be noted that the density of the latent factors in ma-
trix/tensor low-rank decomposition may destroy the supporting
information behind the data and hence the decomposition cannot
provide sufficient information [15]. For example, for a gene expres-
sion data set with 5000 genes for cancer patients, PCA can give
a low dimensional representation which can help cluster cancer
versus healthy patients [8]. However, in reality, we do not know
in advance which genes should be expressed and hence the dense
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factors cannot provide sufficient information. To search the inter-
pretable factors, sparsity needs to be imposed on the latent fac-
tors so that one can associate cancer versus no cancer with a small
group of genes, and this results in matrix/tensor sparse decompo-
sitions [5]. Now, the sparsity strategy is widely used in signal pro-
cessing, biostatistics, etc. [13–15].

Another example of applications in matrix/tensor sparse
decompositions is clustering, which is widely used in information
retrieval, databases, text and data mining, bioinformatics, market-
basket analysis, and so on [2,10]. By grouping the data, the
clustering can identify distinctive ‘‘checkerboard’’ patterns for a
given data and hence some useful features can be extracted from
the mass data. In essence, clustering is to group a set of objects
(represented typically by a set of feature vectors) into distinct
classes which can be modeled as partitioning the data set into
clusters such that the feature vectors falling in the same cluster
are close to each other and the vectors in different clusters are far
away from each other [10,12]. The clustering problem can also be
formulated as matrix/tensor sparse decompositions [12].

It is well known that l1 regularization is an efficient way to con-
trol the sparsity of latent factors in sparse optimization and the
strategy is widely used in signal processing [3,14] and biostatistics
[15]. In traditional l1 regularization problem, such as compressed
sensing [16], speech emotion recognition [17], the regularization
parameter selection is investigated theoretically [6,11]. However,
for l1 regularized matrix/tensor nonnegative sparse decomposi-
tions, the regularization parameter selection has not been inves-
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tigated systemically in the literature. Based on this observation,
we consider the l1 regularization parameter selection for the ma-
trix/tensor nonnegative sparse decomposition in this paper. More
precisely, we provide a threshold bound of the regularization pa-
rameters beyond which all the optimal decomposition factors are
zero. The obtained result provides a guideline on selection for
l1 regularization parameters. Furthermore, the result improves
the norm balancing property for l1 regularization parameters [12]
and extends the corresponding results on the original Lasso func-
tion [11].

To end this section, we present some notations used in this
paper. Throughout this paper, we use a lowercase letter, say x, to
denote scalars, bold lowercase letter, say x, to represent vectors,
and xi to denote ith entry of vector x. We use a bold uppercase
letter, say A, to denote a matrix, and use Aij to denote the ijth
entry of matrix A. We use a bold and calligraphic letter, say A,
to denote a higher order tensor. We use x(1)

◦ x(2)
◦ · · · ◦ x(m) or

◦
m
i=1 x

(i) to denote the out-product of vectors x(1)
∈ Rn1 , x(2)

∈

Rn2 , . . . , x(m)
∈ Rnm with i1i2 · · · imth entry x(1)

i1
x(2)
i2

· · · x(m)
im , 1 ≤

ij ≤ nj, j = 1, 2, . . . ,m. We use ∥ · ∥1 to denote l1-norm of a vector
or a matrix which refers to the sum of the absolute value of the
entries, use ∥ · ∥2 to denote the l2-norm of a vector, and use ∥ · ∥∞

to denote themaximum of the absolute value of the vector entries.
The inner product of two matrices A, B ∈ Rm×n or two higher-
order tensors A, B ∈ Rn1×···×nm is defined as

⟨A, B⟩ =

m,n
i,j=1

AijBij, ⟨A, B⟩ =

n1,...,nm
i1,...,im=1

Ai1i2···imBi1i2···im .

The Frobenius norms of matrix A and tensor A are respectively
defined as

∥A∥F =


⟨A,A⟩, ∥A∥F =


⟨A, A⟩.

2. Sparsity analysis of latent factors inmatrix/tensor decompo-
sition

As a powerful tool in data analysis with multiple arrays, tensor
has receivedmuch attention of researchers and from its similarities
to matrix, tensor decomposition is proposed by exploring their
multilinear algebra properties [4]. As massive amounts of data
often lead to limitations and challenges in analysis, sparsity is
often imposed on the latent factors to improve the analysis and
inference learning [13]. Mathematically, the nonnegative sparse
tensor decomposition is formulated as follows [12],

min

A −

K
j=1


◦
m
i=1x

(i,j)
2

F

,

s.t. x(i,j)
∈ Rni is nonnegative and sparse,

i = 1, . . . ,m; j = 1, . . . , K ,

where tensor A ∈ Rn1×···nm is the given data which is often
nonnegative. As the problem is NP-hard [1], it can be relaxed as
follows by introducing l1 regularization into the model,

min
X(i,j)≥0,i=1,...,m;j=1,2,...,K

A −

K
j=1


◦
m
i=1 x

(i,j)
2

F

+

m
i=1

λ(i)
∥X(i)

∥1, (2.1)

where positive numbers λ(i), i = 1, 2, . . . ,m are regularization
parameters used to control the sparsity of latent factors X(i)

=

(x(i,1), x(i,2), . . . , x(i,K)), i = 1, 2, . . . ,m.

If K = 1, then problem (2.1) reduces to

min
x(i)≥0,i=1,...,m

∥A − ◦
m
i=1 x

(i)
∥
2
F +

m
i=1

λ(i)
∥x(i)

∥1. (2.2)

If the tensor order is 2, then tensor A reduces to matrix A and
problem (2.1) reduces to the following nonnegative matrix sparse
decomposition arising in data mining such as PCA [5,8] and co-
clustering [12],
min
X,Y≥0

∥A − XY⊤
∥
2
F,

s.t. X ∈ RI×K , Y ∈ RJ×K are both sparse.
Correspondingly, its l1 relaxed form is as follows

min
X,Y≥0

∥A − XY⊤
∥
2
F + λx

∥X∥1 + λy
∥Y∥1, (2.3)

where X = (x(1), x(2), . . . , x(K)) ∈ RI×K and Y = (y(1), y(2),
. . . , y(K)) ∈ RJ×K . Furthermore, if matrix XY⊤ is of rank 1, i.e., K =

1, then matrices X, Y reduce to vectors x ∈ RI , y ∈ RJ and problem
(2.3) reduces to

min
x,y≥0

∥A − xy⊤
∥
2
F + λx

∥x∥1 + λy
∥y∥1, (2.4)

which is reminiscent of the regularization form of the Lasso model
in compressed sensing [3,6],
min

x
∥Ax − b∥

2
2 + λ∥x∥1.

In the Lasso model, the Lagrangian multiplier λ is served as the
regularization factor to control the sparsity of latent vector x and
it was shown that when the regularization factor λ > 0 is suffi-
ciently large, or more precisely, if λ ≥ 2∥A⊤b∥∞, then its solution
is a zero vector [11]. A similar question for models (2.1) and (2.3)
is proposed naturally: Do the sufficient large values of the regular-
ization factors guarantee that the optimality solutions of problems
(2.1) and (2.3) are zero? What is the relation of the regularization
parameters in controlling the sparsity of the latent factors?

To investigate these problems, we first present the following
norm-balancing property of problem (2.1) established in [12] and
the assumptions needed in subsequent analysis.

Lemma 2.1. For any optimal solution (X(1), . . . ,X(m)) of problem
(2.1) with regularization factor (λ(1), . . . , λ(m)), it holds that
λ(1)

∥X(1)
∥1 = · · · = λ(m)

∥X(m)
∥1.

Assumption 2.1. For any fixed positive regularization factor (λ(1),
. . . , λ(m)), the optimization problems (2.1) and (2.2) both have a
unique solution.

In the following analysis, we will first consider problem (2.2)
and then extend the obtained results to problem (2.1).

Lemma 2.2. Suppose Assumption 2.1 holds. Let (x(1), . . . , x(m)) and
(y(1), . . . , y(m)) be the optimal solutions of problem (2.2) respectively
with regularization factors (λ(1)

x , . . . , λ
(m)
x ) and (λ

(1)
y , . . . , λ

(m)
y ) such

that
m

i=1 λ
(i)
x =

m
i=1 λ

(i)
y . Then ∥A−◦

m
i=1 x

(i)
∥
2
F = ∥A−◦

m
i=1 y

(i)
∥
2
F

and problem (2.2) has the same optimal objective function value.

Proof. For given regularization factors (λ
(1)
x , λ

(2)
x , . . . , λ

(m)
x ) and

(λ
(1)
y , λ

(2)
y , . . . , λ

(m)
y ), from the assumption on them, there exist

ti, i = 1, 2, . . . ,m such that λ
(i)
x = tiλ

(i)
y and

m
i=1 ti = 1. By the

assumption,

∥A − ◦
m
i=1 x

(i)
∥
2
F +

m
i=1

λ(i)
x ∥x(i)

∥1

= ∥A − ◦
m
i=1 tix

(i)
∥
2
F +

m
i=1

λ(i)
y ∥tix(i)

∥1

≥ ∥A − ◦
m
i=1 y

(i)
∥
2
F +

m
i=1

λ(i)
y ∥y(i)

∥1.
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