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a b s t r a c t

Dual-feasible functions have proved to be very effective for generating fast lower bounds and valid in-
equalities for integer linear programs with knapsack constraints. However, a significant limitation is that
they are defined only for positive arguments. Extending the concept of dual-feasible function to the gen-
eral domain and range R is not straightforward. In this paper, we propose the first construction principles
to obtain general functions with domain and range R, and we show that they lead to non-dominated
maximal functions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In [9], the authors showed that extending the concept of dual-
feasible function to domain and range R is far from straightfor-
ward. Many properties of standard dual-feasible functions are lost
in this process, thus complicating the task of deriving strong non-
dominated functions. In this paper, we introduce the first general
construction principles that allow to generate dual-feasible func-
tions with domain and range R. These principles can be seen as
general methods defining families of different dual-feasible func-
tions. We show in particular that these principles lead to fami-
lies of non-dominated dual-feasible functions from which strong
lower bounds and inequalities can be obtained for integer linear
optimization problems with knapsack constraints and general co-
efficients. To complete the analysis of these general construction
principles, we describe and analyse specific instances of functions
obtained from each principle.

In [4], Gomory and Johnson showed how valid inequalities can
be obtained fromknapsack constraints by analysing corner polyhe-
dra, and how to use them to generate other valid inequalities by in-
terpolation, particularly in their Theorem 3.1. This ideawas further
explored by Dash et al. in [3]. However, both the approaches by Go-
mory and Johnson [4] and Dash et al. [3] require rational problem
data, while the contributions described in our paper do not impose
such prerequisites. Furthermore, although Theorem 1.5 of [4], ref-

∗ Correspondence to: Dept. Produção e Sistemas, Universidade do Minho, 4710-
057 Braga, Portugal. Tel.: +351 253 604765; fax: +351 253 604741.

E-mail addresses: juergen_rietz@gmx.de (J. Rietz), claudio@dps.uminho.pt
(C. Alves), vc@dps.uminho.pt (J. Valério de Carvalho),
francois.clautiaux@math.u-bordeaux.fr (F. Clautiaux).

erenced by the proof of Theorem 3.1 in the same paper, provides
a characterization of subadditive functions on a subgroup of the
unit intervalwith additionmodulo 1, this theoremdoes not explain
how to construct these functions, like it is done in our contribution
for superadditive functions.

In Section 2, we recall some of the definitions related to
standard and general dual-feasible functions. The construction
principles are introduced and analysed in Section 3. To further
illustrate these general construction principles, we introduce in
Section 4 specific examples of dual-feasible functions with domain
and range R obtained by applying each procedure.

2. General dual-feasible functions

The vast majority of the dual-feasible functions described in
the literature is defined for positive arguments only. Most of the
time, these functions are declared on the domain [0, 1], although
their extension to the domain [0, C] with a constant C > 0 is usu-
ally straightforward. The formal definition of these standard dual-
feasible functions stands as follows.

Definition 1. A function f : [0, 1] → [0, 1] is a dual-feasible
function (DFF), if for any finite set {xi ∈ R+ : i ∈ I} of nonnegative
numbers, it holds that
i∈I

xi ≤ 1 H⇒


i∈I

f (xi) ≤ 1.

We will use the term general dual-feasible function to refer to a
dual-feasible function whose domain is not restricted to positive
arguments, but that considers instead the domain R of any real
value. In [9], we showed that this generalization is not straight-
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forward. Indeed, several properties that apply to standard func-
tions are lost when one goes into the domain of real arguments.
The counterpart is that general dual-feasible functions can be used
on problemswhose knapsack constraints have general coefficients
and hence their applicability increases significantly. General dual-
feasible functions are defined as follows.

Definition 2. A function f : R → R is a general dual-feasible
function, if for any finite set {xi ∈ R : i ∈ I} of real numbers, it
holds that
i∈I

xi ≤ 1 H⇒


i∈I

f (xi) ≤ 1. (1)

Maximality is an important property that distinguishes
dominated from non-dominated functions. In practice, a (general)
dual-feasible function f is maximal, if there is no other (general)
dual-feasible function g with f (x) ≤ g(x) for all possible val-
ues of x. We recall in the sequel the properties of standard max-
imal dual-feasible functions from [0, 1] → [0, 1]. For a function
f : [0, 1] → [0, 1] to be a maximal dual-feasible function (MDFF),
it is necessary and sufficient [5] that f is symmetric:

f (x) + f (1 − x) = 1 for all x ∈ [0, 1/2], (2)

f (0) = 0, and f satisfies the superadditivity condition:

f (x1 + x2) ≥ f (x1) + f (x2)
for all x1, x2 with 0 < x1 ≤ x2 < 1/2 and x1 + x2 ≤ 2/3.

For general dual-feasible functions, the symmetry rule (2) becomes

f (x) + f (1 − x) = 1, for all x ≤ 1/2. (3)

An example of how standard dual-feasible functionsmay be dif-
ferent from general dual-feasible functions is the fact that symme-
try (3), which is an important property of standard MDFFs, has not
to be necessarily fulfilled by a general MDFF. In [8], we stated the
conditions for a general dual-feasible function to be maximal. We
recall these conditions next.

Theorem 1 ([8]). Let f : R → R be a given function.

(a) If f satisfies the following conditions, then f is a general MDFF:
1. f (0) = 0;
2. f is superadditive, i.e., for all x, y ∈ R, it holds that

f (x + y) ≥ f (x) + f (y); (4)
3. there is an ε > 0, such that f (x) ≥ 0 for all x ∈ (0, ε);
4. f obeys the symmetry rule (3).

(b) If f is a general MDFF, then the above properties (1)–(3) hold for
f , but not necessarily (4).

(c) If f satisfies the above conditions (1)–(3), then f is monotone
increasing.

(d) If the symmetry rule (3) holds and f obeys the inequality (4) for
all x, y ∈ R with x ≤ y ≤

1−x
2 , then f is superadditive.

Proof. The proof provided in [8] is repeated here for the sake of
clarity. The proof is made in the following order: First, we prove
(c), then (b), (a), and finally (d) is proved.

(c) If f satisfies the first three conditions, then for any x > 0
setting n := ⌊x/ε⌋ + 1 yields n ∈ N \ {0} and 0 < x/n < ε. Hence,
we have f (x/n) ≥ 0 and f (x) ≥ n × f (x/n) ≥ 0. Therefore, the
monotonicity follows immediately from f (x2) ≥ f (x1)+ f (x2 −x1)
for any x1, x2 ∈ R with x1 ≤ x2.

(b) Let f : R → R be a generalMDFF.We prove the properties 1.
to 3. of part (a). One has f (0) ≤ 0 due to the defining condition (1)
for general dual-feasible functions. On the other hand, f (x) < 0 for
a certain x ≥ 0 is impossible, because f is maximal and setting f (x)
to zero cannot violate the condition (1) for general dual-feasible

functions. Assume that f (x1 + x2) < f (x1) + f (x2) for certain
x1, x2 ∈ R. Define a function g : R → R as

g(x) :=


f (x) if x ≠ x1 + x2
f (x1) + f (x2) otherwise.

Since f is a general MDFF, g must violate the defining condition for
a general dual-feasible function. Suppose, one summand on the left
part of (1) equals x1 + x2. Replacing it by two summands x1 and x2
leads to a violation if x1, x2 ≠ 0, because of the definition of g . That
is a contradiction.

It remains to give a counter example to the symmetry (3). For
any constant c ∈ [0, 1], the linear function f : R → R with
f (x) := cx is a general MDFF, but not symmetric for c < 1. It is
a general dual-feasible function according to Definition 2, because
for any n ∈ N \ {0} and numbers x1, . . . , xn ∈ R with

n
i=1 xi ≤ 1,

it holds that
n

i=1 f (xi) = c ∗
n

i=1 xi ≤ c. Suppose, there is
a general dual-feasible function g : R → R with g(x) ≥ cx
for all x ∈ R and g(y) > cy for a certain y ∈ R. Definition 2
implies g(y)+g(−y) ≤ 0. Since g(−y) ≥ f (−y), the contradiction
0 ≥ g(y)+ g(−y) > cy− cy = 0 follows. Since f is not dominated
by another general dual-feasible function, it is maximal. If c < 1
then f (x) + f (1 − x) = c < 1, violating (3).

(a) The converse direction is to prove that if f satisfies
conditions 1. to 4. of part (a), then f is a general MDFF. For any
n ∈ N and x1, . . . , xn ∈ R with

n
i=1 xi ≤ 1, the superadditivity

condition 2. in part (a) yields
n

i=1 f (xi) ≤ f (
n

i=1 xi). Let x0 :=

1 −
n

i=1 xi ≥ 0. Therefore, we have f (x0) ≥ 0 due to the already
proved part (c). Because of f (1 − x0) + f (x0) = 1, it follows that
f is a general dual-feasible function. Let g : R → R be a general
dual-feasible function with g(x) > f (x) for a certain x ∈ R. Since
g is a general dual-feasible function, one has g(1 − x) + g(x) ≤ 1.
It follows that g(1 − x) ≤ 1 − g(x) < 1 − f (x) = f (1 − x) due to
(3), hence g does not dominate f . Therefore, f is a general MDFF.

(d) If x > 1/2, then z := 1 − x < 1/2, and hence f (z) +

f (1 − z) = 1 due to (3). That implies f (x) + f (1 − x) = 1.
This symmetry will be assumed for the entire remaining proof. The
condition x ≤ y ≤

1−x
2 implies x + y ≤ 2/3 and x ≤ 1/3, because

x ≤
1−x
2 leads to 3x ≤ 1 and therefore x + y ≤

1+x
2 ≤

1+1/3
2 =

2
3 .

Obviously, the inequality (4) is valid if and only if it is true after
exchanging x against y. Therefore, x ≤ y can be enforced without
loss of generality. Now we prove that the inequality (4) holds for
all x, y ∈ R, if it is true for all x, y ∈ R with x + y ≤ 2/3. If
x + y > 2/3, then y > 1/3 due to x ≤ y. Hence, 1 − y < 2/3
and f (x) + f (1 − y − x) ≤ f (1 − y) according to the inequality
(4). The symmetry (3) yields f (x) + 1 − f (x + y) ≤ 1 − f (y), and
hence f (x) + f (y) ≤ f (x + y), as needed. Therefore, x + y ≤ 2/3
can be assumed in the rest of the proof, and hence x ≤

1
3 ≤

1−x
2 . If

y > 1−x
2 , then let z := 1 − x − y < 1−x

2 . Due to the previous parts
of the proof of point (d) and the prerequisites, the superadditivity
rule (4) can be used, implying f (x)+f (z) ≤ f (x+z). The symmetry
rule (3) yields f (x) + 1 − f (1 − z) ≤ 1 − f (1 − x − z), and hence
f (x) + f (1 − x − z) = f (x) + f (y) ≤ f (1 − z) = f (x + y). �

It is well known that standard dual-feasible functions gener-
ate solutions that are feasible for the dual of instances of the
1-dimensional cutting stock problem. The same happenswith gen-
eral dual-feasible functions for the casewhere the sizes of the items
and the variables of the dual problem are not restricted in sign.
Negative sizesmay happenwhen it is possible to use a certain fixed
quantity of extra space in containers in limited number (which can
be seen as items of negative size).

Negative sizes also occur when balance constraints are consid-
ered. For example, let us consider a process assignment problem,
where p processes have to be assigned to a minimum number of
identical machines. Each process i has a given demand ci in CPU,
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