Disjunctive cuts for cross-sections of the second-order cone

CrossMark

Sercan Yıldız, Gérard Cornuéjols*
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, United States

ARTICLE INFO

Article history:

Received 10 June 2014
Received in revised form
26 May 2015
Accepted 1 June 2015
Available online 11 June 2015

Keywords:

Mixed-integer conic programming
Second-order cone programming
Cutting planes
Disjunctive cuts

Abstract

In this paper we study general two-term disjunctions on affine cross-sections of the second-order cone. Under some mild assumptions, we derive a closed-form expression for a convex inequality that is valid for such a disjunctive set, and we show that this inequality is sufficient to characterize the closed convex hull of all two-term disjunctions on ellipsoids and paraboloids and a wide class of two-term disjunctions - including split disjunctions - on hyperboloids. Our approach relies on the work of Kılınç-Karzan and Yıldiz which considers general two-term disjunctions on the second-order cone.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the mixed-integer second-order conic set
$S:=\left\{x \in \mathbb{L}^{n}: A x=b, x_{j} \in \mathbb{Z} \forall j \in J\right\}$
where \mathbb{L}^{n} is the n-dimensional second-order cone $\mathbb{L}^{n}:=\{x \in$ $\left.\mathbb{R}^{n}:\left\|\left(x_{1} ; \ldots ; x_{n-1}\right)\right\| \leq x_{n}\right\}, A$ is an $m \times n$ real matrix of full row rank, d and b are real vectors of appropriate dimensions, $J \subseteq$ $\{1, \ldots, n\}$, and $\|$.$\| denotes the Euclidean norm. The set S$ appears as the feasible solution set or a relaxation thereof in mixed-integer second order cone programming problems. Because the structure of S can be very complicated, a first approach to solving
$\sup \left\{d^{\top} x: x \in S\right\}$
entails solving the relaxed problem obtained after dropping the integrality requirements on the variables:
$\sup \left\{d^{\top} x: x \in C\right\} \quad$ where $C:=\left\{x \in \mathbb{L}^{n}: A x=b\right\}$.
The set C is called the natural continuous relaxation of S. Unfortunately, the continuous relaxation C is often a poor approximation to the mixed-integer conic set S, and tighter formulations are needed for the development of practical strategies for solving (1). An effective way to improve the approximation quality of the continuous relaxation C is to strengthen it with additional convex inequalities that are valid for S but not for the whole of C. Such valid

[^0]inequalities can be derived by exploiting the integrality of the variables $x_{j}, j \in J$, and enhancing C with linear two-term disjunctions $l_{1}^{\top} x \geq l_{1,0} \vee l_{2}^{\top} x \geq l_{2,0}$ that are satisfied by all solutions in S. Valid inequalities that are obtained from disjunctions using this approach are known as disjunctive cuts. In this paper we study twoterm disjunctions on the set C and give closed-form expressions for the strongest disjunctive cuts that can be obtained from such disjunctions.

Disjunctive cuts were introduced by Balas in the context of mixed-integer linear programming [3] and have since been the cornerstone of theoretical and practical achievements in integer programming. There has been a lot of recent interest in extending disjunctive cutting-plane theory from the domain of mixed-integer linear programming to that of mixed-integer conic programming [18,9,11,12,7,2]. Kılınç-Karzan [13] studied minimal valid linear inequalities for general disjunctive conic sets and showed that these are sufficient to describe the associated closed convex hull under a mild technical assumption. Bienstock and Michalka [6] studied the characterization and separation of linear inequalities that are valid for the epigraph of a convex, differentiable function whose domain is restricted to the complement of a convex set. On the other hand, several papers in the last few years have focused on deriving closed-form expressions for nonlinear convex inequalities that fully describe the convex hull of a disjunctive second-order conic set in the space of the original variables. Dadush et al. [10] and Andersen and Jensen [1] derived split cuts for ellipsoids and the second-order cone, respectively. Modaresi et al. extended these results to split disjunctions on cross-sections of the second-order cone [15] and compared the effectiveness of split cuts against conic MIR inequalities and extended formulations [16]. For disjoint two-term disjunctions on cross-sections of the second-order cone
and under the assumption that $\left\{x \in C: l_{1}^{\top} x=l_{1,0}\right\}$ and $\{x \in C$: $\left.l_{2}^{\top} x=l_{2,0}\right\}$ are bounded, Belotti et al. [5,4] proved that there exists a unique cone which describes the convex hull of the disjunction. They also identified a procedure for identifying this cone when C is an ellipsoid. Using the structure of minimal valid linear inequalities, Kılınç-Karzan and Yıldız [14] derived a family of convex inequalities which describes the convex hull of a general two-term disjunction on the whole second-order cone. In this paper, we pursue a similar goal: we study general two-term disjunctions on a cross-section C of the second-order cone, namely $C=\left\{x \in \mathbb{L}^{n}\right.$: $A x=b\}$. Given a disjunction $l_{1}^{\top} x \geq l_{1,0} \vee l_{2}^{\top} x \geq l_{2,0}$ on C, we let

$$
C_{1}:=\left\{x \in C: l_{1}^{\top} x \geq l_{1,0}\right\} \quad \text { and } \quad C_{2}:=\left\{x \in C: l_{2}^{\top} x \geq l_{2,0}\right\} .
$$

In order to derive the tightest disjunctive cuts that can be obtained for S from the disjunction $C_{1} \cup C_{2}$, we study the closed convex hull $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$. In particular, we are interested in convex inequalities that may be added to the description of C to obtain a characterization of $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$. Our starting point is the paper [14] about two-term disjunctions on the second-order cone \mathbb{L}^{n}. We extend the main result of [14] to cross-sections of the second-order cone. Such cross-sections include ellipsoids, paraboloids, and hyperboloids as special cases. Our results generalize the work of $[10,15]$ on split disjunctions on crosssections of the second-order cone and [4] on disjoint two-term disjunctions on ellipsoids. We note here that general results on convexifying the intersection of a cross-section of the second-order cone with a non-convex cone defined by a single homogeneous quadratic were recently obtained independently in [8].

We first show in Section 2 that the continuous relaxation C can be assumed to be the intersection of a lower-dimensional second-order cone with a single hyperplane. In Section 3, we give a complete description of the convex hull of a homogeneous twoterm disjunction on the whole second-order cone. In Section 4, we prove our main result, Theorem 3, characterizing $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ under certain conditions. We end the paper with two examples which illustrate the applicability of Theorem 3.

Throughout the paper, we use conv $K, \overline{\operatorname{conv}} K$, cone K, and span K to refer to the convex hull, closed convex hull, conical hull, and linear span of a set K, respectively. We also use bd K, int K, and $\operatorname{dim} K$ to refer the boundary, interior, and dimension of K. The dual cone of $K \subseteq \mathbb{R}^{n}$ is $K^{*}:=\left\{\alpha \in \mathbb{R}^{n}: x^{\top} \alpha \geq 0 \forall x \in K\right\}$. The second-order cone \mathbb{L}^{n} is self-dual, that is, $\left(\mathbb{L}^{n}\right)^{*}=\mathbb{L}^{n}$. Given a vector $u \in \mathbb{R}^{n}$, we let $\tilde{u}:=\left(u_{1} ; \ldots ; u_{n-1}\right)$ denote the subvector obtained by dropping its last entry.

2. Intersection of the second-order cone with an affine subspace

In this section, we show that the continuous relaxation C can be assumed to be the intersection of a lower-dimensional secondorder cone with a single hyperplane. Let $E:=\left\{x \in \mathbb{R}^{n}: A x=b\right\}$ so that $C=\mathbb{L}^{n} \cap E$. We are going to use the following lemma to simplify our analysis.

Lemma 1. Let V be a p-dimensional linear subspace of \mathbb{R}^{n}. The intersection $\mathbb{L}^{n} \cap V$ is either the origin, a half-line, or a bijective linear transformation of \mathbb{L}^{p}.

See Section 2.1 of [5] for a similar result. We do not give a formal proof of Lemma 1 but just note that it can be obtained by observing that the second-order cone is the conic hull of a (one dimension smaller) sphere, and that the intersection of a sphere with an affine space is either empty, a single point (when the affine space intersects the sphere but not its interior), or a lower dimensional sphere of the same dimension as the affine space (when the affine space intersects the interior of the sphere).

Lemma 1 implies that, when $b=0, C$ is either the origin, a half-line, or a bijective linear transformation of \mathbb{L}^{n-m}. The closed convex hull $\operatorname{conv}\left(C_{1} \cup C_{2}\right)$ can be described easily when C is a single point or a half-line. Furthermore, the problem of characterizing $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ when C is a bijective linear transformation of \mathbb{L}^{n-m} can be reduced to that of convexifying an associated two-term disjunction on \mathbb{L}^{n-m}. We refer the reader to [14] for a detailed study of the closed convex hulls of two-term disjunctions on the secondorder cone.

In the remainder, we focus on the case $b \neq 0$. Note that, whenever this is the case, we can permute and normalize the rows of (A, b) so that its last row reads $\left(a_{m}^{\top}, 1\right)$, and subtracting a multiple of ($a_{m}^{\top}, 1$) from the other rows if necessary, we can write the remaining rows of (A, b) as $(\tilde{A}, 0)$. Therefore, we can assume without any loss of generality that all components of b are zero except the last one. Isolating the last row of (A, b) from the others, we can then write
$E=\left\{x \in \mathbb{R}^{n}: \tilde{A} x=0, a_{m}^{\top} x=1\right\}$.
Let $V:=\left\{x \in \mathbb{R}^{n}: \tilde{A} x=0\right\}$. By Lemma $1, \mathbb{L}^{n} \cap V$ is the origin, a half-line, or a bijective linear transformation of \mathbb{L}^{n-m+1}. Again, the first two cases are easy and not of interest in our analysis. In the last case, we can find a matrix D whose columns form an orthonormal basis for V and define a nonsingular matrix H such that $\left\{y \in \mathbb{R}^{n-m+1}: D y \in \mathbb{L}^{n}\right\}=H \mathbb{L}^{n-m+1}$. Then we can represent C equivalently as

$$
\begin{aligned}
C & =\left\{x \in \mathbb{L}^{n}: x=D y, a_{m}^{\top} x=1\right\} \\
& =D\left\{y \in \mathbb{R}^{n-m+1}: D y \in \mathbb{L}^{n}, a_{m}^{\top} D y=1\right\} \\
& =D\left\{y \in \mathbb{R}^{n-m+1}: y \in H \mathbb{L}^{n-m+1}, a_{m}^{\top} D y=1\right\} \\
& =D H\left\{z \in \mathbb{L}^{n-m+1}: a_{m}^{\top} D H z=1\right\} .
\end{aligned}
$$

The set $C=\mathbb{L}^{n} \cap E$ is a bijective linear transformation of $\left\{z \in \mathbb{L}^{n-m+1}: a_{m}^{\top} D H z=1\right\}$. Furthermore, the same linear transformation maps any two-term disjunction in $\left\{z \in \mathbb{L}^{n-m+1}\right.$: $\left.a_{m}^{\top} D H z=1\right\}$ to a two-term disjunction in C and vice versa. Thus, without any loss of generality, we can take $m=1$ in (1) and study the problem of describing $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ where
$C=\left\{x \in \mathbb{L}^{n}: a^{\top} x=1\right\}$,
$C_{1}=\left\{x \in C: l_{1}^{\top} x \geq l_{1,0}\right\}, \quad$ and
$C_{2}=\left\{x \in C: l_{2}^{\top} x \geq l_{2,0}\right\}$.
In Section 4 we will give a full description of $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ under certain conditions.

3. Homogeneous two-term disjunctions on the second-order cone

In this section, we study the convex hull of a homogeneous twoterm disjunction $c_{1}^{\top} x \geq 0 \vee c_{2}^{\top} x \geq 0$ on the second-order cone. Let
$Q_{1}:=\left\{x \in \mathbb{L}^{n}: c_{1}^{\top} x \geq 0\right\} \quad$ and $\quad Q_{2}:=\left\{x \in \mathbb{L}^{n}: c_{2}^{\top} x \geq 0\right\}$. (3)
The main result of this section characterizes $\operatorname{conv}\left(Q_{1} \cup Q_{2}\right)$. Note that Q_{1} and Q_{2} are closed, convex, pointed cones; therefore, $\operatorname{conv}\left(Q_{1} \cup Q_{2}\right)$ is always closed (see, e.g., Rockafellar [17, Corollary 9.1.3]).

When $Q_{1} \subseteq Q_{2}$, we have $\operatorname{conv}\left(Q_{1} \cup Q_{2}\right)=Q_{2}$. Similarly, when $Q_{1} \supseteq Q_{2}$, we have $\operatorname{conv}\left(Q_{1} \cup Q_{2}\right)=Q_{1}$. In the remainder of this section, we focus on the case where $Q_{1} \nsubseteq Q_{2}$ and $Q_{1} \nsupseteq Q_{2}$.

Assumption 1. $Q_{1} \nsubseteq Q_{2}$ and $Q_{1} \nsupseteq Q_{2}$.
We also make the following technical assumption.
Assumption 2. $Q_{1} \cap \operatorname{int} \mathbb{L}^{n} \neq \emptyset$ and $Q_{2} \cap$ int $\mathbb{L}^{n} \neq \emptyset$.

https://daneshyari.com/en/article/1142254

Download Persian Version:

https://daneshyari.com/article/1142254

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: syildiz@andrew.cmu.edu (S. Yıldız), gc0v@andrew.cmu.edu (G. Cornuéjols).

