Operations Research Letters 43 (2015) 432-437

Contents lists available at ScienceDirect

Operations Research Letters

iournal homepage: www.elsevier.com/locate/orl

Disjunctive cuts for cross-sections of the second-order cone

Sercan Yıldız, Gérard Cornuéjols*

Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, United States

ARTICLE INFO

ABSTRACT

Article history: Received 10 June 2014 Received in revised form 26 May 2015 Accepted 1 June 2015 Available online 11 June 2015

Keywords: Mixed-integer conic programming

Second-order cone programming Cutting planes Disjunctive cuts

1. Introduction

In this paper we consider the mixed-integer second-order conic set

 $S := \{x \in \mathbb{L}^n : Ax = b, x_i \in \mathbb{Z} \forall i \in I\}$

where \mathbb{L}^n is the *n*-dimensional second-order cone $\mathbb{L}^n := \{x \in$ \mathbb{R}^n : $||(x_1; \ldots; x_{n-1})|| \le x_n$, A is an $m \times n$ real matrix of full row rank, *d* and *b* are real vectors of appropriate dimensions, $J \subseteq$ $\{1, \ldots, n\}$, and $\|.\|$ denotes the Euclidean norm. The set *S* appears as the feasible solution set or a relaxation thereof in mixed-integer second order cone programming problems. Because the structure of S can be very complicated, a first approach to solving

$$\sup\left\{d^{\top}x:\ x\in S\right\}\tag{1}$$

entails solving the relaxed problem obtained after dropping the integrality requirements on the variables:

$$\sup \{ d^{\top}x : x \in C \} \quad \text{where } C := \{ x \in \mathbb{L}^n : Ax = b \}$$

The set C is called the natural continuous relaxation of S. Unfortunately, the continuous relaxation C is often a poor approximation to the mixed-integer conic set S, and tighter formulations are needed for the development of practical strategies for solving (1). An effective way to improve the approximation guality of the continuous relaxation C is to strengthen it with additional convex inequalities that are valid for S but not for the whole of C. Such valid

Corresponding author.

inequalities can be derived by exploiting the integrality of the variables x_j , $j \in J$, and enhancing C with linear two-term disjunctions $l_1^{\top} x \ge l_{1,0} \lor l_2^{\top} x \ge l_{2,0}$ that are satisfied by all solutions in *S*. Valid inequalities that are obtained from disjunctions using this approach are known as disjunctive cuts. In this paper we study twoterm disjunctions on the set C and give closed-form expressions for the strongest disjunctive cuts that can be obtained from such disjunctions.

Disjunctive cuts were introduced by Balas in the context of mixed-integer linear programming [3] and have since been the cornerstone of theoretical and practical achievements in integer programming. There has been a lot of recent interest in extending disjunctive cutting-plane theory from the domain of mixed-integer linear programming to that of mixed-integer conic programming [18,9,11,12,7,2]. Kılınç-Karzan [13] studied minimal valid linear inequalities for general disjunctive conic sets and showed that these are sufficient to describe the associated closed convex hull under a mild technical assumption. Bienstock and Michalka [6] studied the characterization and separation of linear inequalities that are valid for the epigraph of a convex, differentiable function whose domain is restricted to the complement of a convex set. On the other hand, several papers in the last few years have focused on deriving closed-form expressions for nonlinear convex inequalities that fully describe the convex hull of a disjunctive second-order conic set in the space of the original variables. Dadush et al. [10] and Andersen and Jensen [1] derived split cuts for ellipsoids and the second-order cone, respectively. Modaresi et al. extended these results to split disjunctions on cross-sections of the second-order cone [15] and compared the effectiveness of split cuts against conic MIR inequalities and extended formulations [16]. For disjoint two-term disjunctions on cross-sections of the second-order cone

In this paper we study general two-term disjunctions on affine cross-sections of the second-order cone.

Under some mild assumptions, we derive a closed-form expression for a convex inequality that is valid for such a disjunctive set, and we show that this inequality is sufficient to characterize the closed convex hull of all two-term disjunctions on ellipsoids and paraboloids and a wide class of two-term disjunctions - including split disjunctions - on hyperboloids. Our approach relies on the work of Kılınç-Karzan and Yıldız which considers general two-term disjunctions on the second-order cone.

© 2015 Elsevier B.V. All rights reserved.

Operations

CrossMark

E-mail addresses: syildiz@andrew.cmu.edu (S. Yıldız), gc0v@andrew.cmu.edu (G. Cornuéjols).

and under the assumption that $\{x \in C : l_1^\top x = l_{1,0}\}$ and $\{x \in C : l_2^\top x = l_{2,0}\}$ are bounded, Belotti et al. [5,4] proved that there exists a unique cone which describes the convex hull of the disjunction. They also identified a procedure for identifying this cone when *C* is an ellipsoid. Using the structure of minimal valid linear inequalities, Kılınç-Karzan and Yıldız [14] derived a family of convex inequalities which describes the convex hull of a general two-term disjunction on the whole second-order cone. In this paper, we pursue a similar goal: we study general two-term disjunctions on a cross-section *C* of the second-order cone, namely $C = \{x \in \mathbb{L}^n : Ax = b\}$. Given a disjunction $l_1^\top x \ge l_{1,0} \lor l_2^\top x \ge l_{2,0}$ on *C*, we let

$$C_1 := \{x \in C : l_1^\top x \ge l_{1,0}\}$$
 and $C_2 := \{x \in C : l_2^\top x \ge l_{2,0}\}.$

In order to derive the tightest disjunctive cuts that can be obtained for *S* from the disjunction $C_1 \cup C_2$, we study the closed convex hull $\overline{\text{conv}}(C_1 \cup C_2)$. In particular, we are interested in convex inequalities that may be added to the description of *C* to obtain a characterization of $\overline{\text{conv}}(C_1 \cup C_2)$. Our starting point is the paper [14] about two-term disjunctions on the second-order cone \mathbb{L}^n . We extend the main result of [14] to cross-sections of the second-order cone. Such cross-sections include ellipsoids, paraboloids, and hyperboloids as special cases. Our results generalize the work of [10,15] on split disjunctions on crosssections of the second-order cone and [4] on disjoint two-term disjunctions on ellipsoids. We note here that general results on convexifying the intersection of a cross-section of the second-order cone with a non-convex cone defined by a single homogeneous quadratic were recently obtained independently in [8].

We first show in Section 2 that the continuous relaxation *C* can be assumed to be the intersection of a lower-dimensional second-order cone with a single hyperplane. In Section 3, we give a complete description of the convex hull of a homogeneous two-term disjunction on the whole second-order cone. In Section 4, we prove our main result, Theorem 3, characterizing $\overline{\text{conv}}(C_1 \cup C_2)$ under certain conditions. We end the paper with two examples which illustrate the applicability of Theorem 3.

Throughout the paper, we use $\operatorname{conv} K$, $\overline{\operatorname{conv}} K$, $\operatorname{cone} K$, and span K to refer to the convex hull, closed convex hull, conical hull, and linear span of a set K, respectively. We also use $\operatorname{bd} K$, $\operatorname{int} K$, and dim K to refer the boundary, interior, and dimension of K. The *dual cone* of $K \subseteq \mathbb{R}^n$ is $K^* := \{\alpha \in \mathbb{R}^n : x^\top \alpha \ge 0 \ \forall x \in K\}$. The second-order cone \mathbb{L}^n is self-dual, that is, $(\mathbb{L}^n)^* = \mathbb{L}^n$. Given a vector $u \in \mathbb{R}^n$, we let $\tilde{u} := (u_1; \ldots; u_{n-1})$ denote the subvector obtained by dropping its last entry.

2. Intersection of the second-order cone with an affine subspace

In this section, we show that the continuous relaxation *C* can be assumed to be the intersection of a lower-dimensional secondorder cone with a single hyperplane. Let $E := \{x \in \mathbb{R}^n : Ax = b\}$ so that $C = \mathbb{L}^n \cap E$. We are going to use the following lemma to simplify our analysis.

Lemma 1. Let V be a p-dimensional linear subspace of \mathbb{R}^n . The intersection $\mathbb{L}^n \cap V$ is either the origin, a half-line, or a bijective linear transformation of \mathbb{L}^p .

See Section 2.1 of [5] for a similar result. We do not give a formal proof of Lemma 1 but just note that it can be obtained by observing that the second-order cone is the conic hull of a (one dimension smaller) sphere, and that the intersection of a sphere with an affine space is either empty, a single point (when the affine space intersects the sphere but not its interior), or a lower dimensional sphere of the same dimension as the affine space (when the affine space intersects the interior of the sphere).

Lemma 1 implies that, when b = 0, C is either the origin, a half-line, or a bijective linear transformation of \mathbb{L}^{n-m} . The closed convex hull $\overline{\text{conv}}(C_1 \cup C_2)$ can be described easily when C is a single point or a half-line. Furthermore, the problem of characterizing $\overline{\text{conv}}(C_1 \cup C_2)$ when C is a bijective linear transformation of \mathbb{L}^{n-m} can be reduced to that of convexifying an associated two-term disjunction on \mathbb{L}^{n-m} . We refer the reader to [14] for a detailed study of the closed convex hulls of two-term disjunctions on the second-order cone.

In the remainder, we focus on the case $b \neq 0$. Note that, whenever this is the case, we can permute and normalize the rows of (A, b) so that its last row reads $(a_m^{\top}, 1)$, and subtracting a multiple of $(a_m^{\top}, 1)$ from the other rows if necessary, we can write the remaining rows of (A, b) as $(\tilde{A}, 0)$. Therefore, we can assume without any loss of generality that all components of b are zero except the last one. Isolating the last row of (A, b) from the others, we can then write

$$E = \left\{ x \in \mathbb{R}^n : \ \tilde{A}x = 0, \ a_m^\top x = 1 \right\}.$$

Let $V := \{x \in \mathbb{R}^n : \tilde{A}x = 0\}$. By Lemma 1, $\mathbb{L}^n \cap V$ is the origin, a half-line, or a bijective linear transformation of \mathbb{L}^{n-m+1} . Again, the first two cases are easy and not of interest in our analysis. In the last case, we can find a matrix D whose columns form an orthonormal basis for V and define a nonsingular matrix H such that $\{y \in \mathbb{R}^{n-m+1} : Dy \in \mathbb{L}^n\} = H\mathbb{L}^{n-m+1}$. Then we can represent C equivalently as

$$C = \{ x \in \mathbb{L}^{n} : x = Dy, a_{m}^{\perp}x = 1 \}$$

= $D \{ y \in \mathbb{R}^{n-m+1} : Dy \in \mathbb{L}^{n}, a_{m}^{\top}Dy = 1 \}$
= $D \{ y \in \mathbb{R}^{n-m+1} : y \in H\mathbb{L}^{n-m+1}, a_{m}^{\top}Dy = 1 \}$
= $DH \{ z \in \mathbb{L}^{n-m+1} : a_{m}^{\top}DHz = 1 \}.$

The set $C = \mathbb{L}^n \cap E$ is a bijective linear transformation of $\{z \in \mathbb{L}^{n-m+1} : a_m^\top DHz = 1\}$. Furthermore, the same linear transformation maps any two-term disjunction in $\{z \in \mathbb{L}^{n-m+1} : a_m^\top DHz = 1\}$ to a two-term disjunction in *C* and vice versa. Thus, without any loss of generality, we can take m = 1 in (1) and study the problem of describing $\overline{\text{conv}}(C_1 \cup C_2)$ where

$$C = \{ x \in \mathbb{L}^{n} : a^{\top}x = 1 \},\$$

$$C_{1} = \{ x \in C : l_{1}^{\top}x \ge l_{1,0} \}, \text{ and } (2)$$

$$C_{2} = \{ x \in C : l_{2}^{\top}x \ge l_{2,0} \}.$$

In Section 4 we will give a full description of $\overline{\text{conv}}(C_1 \cup C_2)$ under certain conditions.

3. Homogeneous two-term disjunctions on the second-order cone

In this section, we study the convex hull of a homogeneous twoterm disjunction $c_1^\top x \ge 0 \lor c_2^\top x \ge 0$ on the second-order cone. Let

 $Q_1 := \{x \in \mathbb{L}^n : c_1^\top x \ge 0\}$ and $Q_2 := \{x \in \mathbb{L}^n : c_2^\top x \ge 0\}$. (3) The main result of this section characterizes $\operatorname{conv}(Q_1 \cup Q_2)$. Note that Q_1 and Q_2 are closed, convex, pointed cones; therefore, $\operatorname{conv}(Q_1 \cup Q_2)$ is always closed (see, e.g., Rockafellar [17, Corollary 9.1.3]).

When $Q_1 \subseteq Q_2$, we have $conv(Q_1 \cup Q_2) = Q_2$. Similarly, when $Q_1 \supseteq Q_2$, we have $conv(Q_1 \cup Q_2) = Q_1$. In the remainder of this section, we focus on the case where $Q_1 \not\subseteq Q_2$ and $Q_1 \not\supseteq Q_2$.

Assumption 1. $Q_1 \not\subseteq Q_2$ and $Q_1 \not\supseteq Q_2$.

We also make the following technical assumption.

Assumption 2. $Q_1 \cap \operatorname{int} \mathbb{L}^n \neq \emptyset$ and $Q_2 \cap \operatorname{int} \mathbb{L}^n \neq \emptyset$.

Download English Version:

https://daneshyari.com/en/article/1142254

Download Persian Version:

https://daneshyari.com/article/1142254

Daneshyari.com