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a b s t r a c t

In this paper we study general two-term disjunctions on affine cross-sections of the second-order cone.
Under some mild assumptions, we derive a closed-form expression for a convex inequality that is valid
for such a disjunctive set, and we show that this inequality is sufficient to characterize the closed convex
hull of all two-term disjunctions on ellipsoids and paraboloids and a wide class of two-term disjunctions
– including split disjunctions – on hyperboloids. Our approach relies on the work of Kılınç-Karzan and
Yıldız which considers general two-term disjunctions on the second-order cone.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paperwe consider themixed-integer second-order conic
set

S := {x ∈ Ln
: Ax = b, xj ∈ Z ∀j ∈ J}

where Ln is the n-dimensional second-order cone Ln
:= {x ∈

Rn
: ∥(x1; . . . ; xn−1)∥ ≤ xn}, A is an m × n real matrix of full

row rank, d and b are real vectors of appropriate dimensions, J ⊆

{1, . . . , n}, and ∥.∥ denotes the Euclidean norm. The set S appears
as the feasible solution set or a relaxation thereof in mixed-integer
second order cone programming problems. Because the structure
of S can be very complicated, a first approach to solving

sup

d⊤x : x ∈ S


(1)

entails solving the relaxed problem obtained after dropping the
integrality requirements on the variables:

sup

d⊤x : x ∈ C


where C :=


x ∈ Ln

: Ax = b

.

The set C is called the natural continuous relaxation of S. Unfor-
tunately, the continuous relaxation C is often a poor approxima-
tion to the mixed-integer conic set S, and tighter formulations are
needed for the development of practical strategies for solving (1).
An effective way to improve the approximation quality of the con-
tinuous relaxation C is to strengthen it with additional convex in-
equalities that are valid for S but not for the whole of C . Such valid
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inequalities can be derived by exploiting the integrality of the vari-
ables xj, j ∈ J , and enhancing C with linear two-term disjunctions
l⊤1 x ≥ l1,0 ∨ l⊤2 x ≥ l2,0 that are satisfied by all solutions in S.
Valid inequalities that are obtained fromdisjunctions using this ap-
proach are known as disjunctive cuts. In this paper we study two-
term disjunctions on the set C and give closed-form expressions
for the strongest disjunctive cuts that can be obtained from such
disjunctions.

Disjunctive cuts were introduced by Balas in the context of
mixed-integer linear programming [3] and have since been the
cornerstone of theoretical and practical achievements in integer
programming. There has been a lot of recent interest in extending
disjunctive cutting-plane theory from the domain ofmixed-integer
linear programming to that of mixed-integer conic program-
ming [18,9,11,12,7,2]. Kılınç-Karzan [13] studiedminimal valid lin-
ear inequalities for general disjunctive conic sets and showed that
these are sufficient to describe the associated closed convex hull
under a mild technical assumption. Bienstock and Michalka [6]
studied the characterization and separation of linear inequalities
that are valid for the epigraph of a convex, differentiable function
whose domain is restricted to the complement of a convex set. On
the other hand, several papers in the last few years have focused on
deriving closed-formexpressions for nonlinear convex inequalities
that fully describe the convex hull of a disjunctive second-order
conic set in the space of the original variables. Dadush et al. [10]
and Andersen and Jensen [1] derived split cuts for ellipsoids and
the second-order cone, respectively.Modaresi et al. extended these
results to split disjunctions on cross-sections of the second-order
cone [15] and compared the effectiveness of split cuts against
conicMIR inequalities and extended formulations [16]. For disjoint
two-term disjunctions on cross-sections of the second-order cone
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and under the assumption that {x ∈ C : l⊤1 x = l1,0} and {x ∈ C :

l⊤2 x = l2,0} are bounded, Belotti et al. [5,4] proved that there exists
a unique cone which describes the convex hull of the disjunction.
They also identified a procedure for identifying this cone when C
is an ellipsoid. Using the structure of minimal valid linear inequal-
ities, Kılınç-Karzan and Yıldız [14] derived a family of convex in-
equalities which describes the convex hull of a general two-term
disjunction on the whole second-order cone. In this paper, we pur-
sue a similar goal: we study general two-term disjunctions on a
cross-section C of the second-order cone, namely C = {x ∈ Ln

:

Ax = b}. Given a disjunction l⊤1 x ≥ l1,0 ∨ l⊤2 x ≥ l2,0 on C , we let

C1 :=

x ∈ C : l⊤1 x ≥ l1,0


and C2 :=


x ∈ C : l⊤2 x ≥ l2,0


.

In order to derive the tightest disjunctive cuts that can be obtained
for S from the disjunction C1 ∪ C2, we study the closed convex
hull conv(C1 ∪ C2). In particular, we are interested in convex
inequalities that may be added to the description of C to obtain
a characterization of conv(C1 ∪ C2). Our starting point is the
paper [14] about two-term disjunctions on the second-order
cone Ln. We extend the main result of [14] to cross-sections
of the second-order cone. Such cross-sections include ellipsoids,
paraboloids, and hyperboloids as special cases. Our results
generalize the work of [10,15] on split disjunctions on cross-
sections of the second-order cone and [4] on disjoint two-term
disjunctions on ellipsoids. We note here that general results on
convexifying the intersection of a cross-section of the second-order
cone with a non-convex cone defined by a single homogeneous
quadratic were recently obtained independently in [8].

We first show in Section 2 that the continuous relaxation C
can be assumed to be the intersection of a lower-dimensional
second-order cone with a single hyperplane. In Section 3, we give
a complete description of the convex hull of a homogeneous two-
term disjunction on the whole second-order cone. In Section 4, we
prove our main result, Theorem 3, characterizing conv(C1 ∪ C2)
under certain conditions. We end the paper with two examples
which illustrate the applicability of Theorem 3.

Throughout the paper, we use conv K , conv K , cone K , and
span K to refer to the convex hull, closed convex hull, conical hull,
and linear span of a set K , respectively. We also use bd K , int K ,
and dim K to refer the boundary, interior, and dimension of K . The
dual cone of K ⊆ Rn is K ∗

:= {α ∈ Rn
: x⊤α ≥ 0 ∀x ∈ K}.

The second-order cone Ln is self-dual, that is, (Ln)∗ = Ln. Given
a vector u ∈ Rn, we let ũ := (u1; . . . ; un−1) denote the subvector
obtained by dropping its last entry.

2. Intersection of the second-order cone with an affine
subspace

In this section, we show that the continuous relaxation C can
be assumed to be the intersection of a lower-dimensional second-
order cone with a single hyperplane. Let E := {x ∈ Rn

: Ax = b}
so that C = Ln

∩ E. We are going to use the following lemma to
simplify our analysis.

Lemma 1. Let V be a p-dimensional linear subspace of Rn. The
intersection Ln

∩V is either the origin, a half-line, or a bijective linear
transformation of Lp.

See Section 2.1 of [5] for a similar result.We do not give a formal
proof of Lemma 1 but just note that it can be obtained by observing
that the second-order cone is the conic hull of a (one dimension
smaller) sphere, and that the intersection of a sphere with an
affine space is either empty, a single point (when the affine space
intersects the sphere but not its interior), or a lower dimensional
sphere of the same dimension as the affine space (when the affine
space intersects the interior of the sphere).

Lemma 1 implies that, when b = 0, C is either the origin, a
half-line, or a bijective linear transformation of Ln−m. The closed
convex hull conv(C1∪C2) can be described easilywhen C is a single
point or a half-line. Furthermore, the problem of characterizing
conv(C1 ∪ C2) when C is a bijective linear transformation of Ln−m

can be reduced to that of convexifying an associated two-term
disjunction onLn−m.We refer the reader to [14] for a detailed study
of the closed convex hulls of two-term disjunctions on the second-
order cone.

In the remainder, we focus on the case b ≠ 0. Note that,
whenever this is the case, we can permute and normalize the
rows of (A, b) so that its last row reads (a⊤

m, 1), and subtracting a
multiple of (a⊤

m, 1) from the other rows if necessary, we can write
the remaining rows of (A, b) as (Ã, 0). Therefore, we can assume
without any loss of generality that all components of b are zero
except the last one. Isolating the last row of (A, b) from the others,
we can then write

E =


x ∈ Rn

: Ãx = 0, a⊤

mx = 1


.

Let V := {x ∈ Rn
: Ãx = 0}. By Lemma 1, Ln

∩ V is the origin,
a half-line, or a bijective linear transformation of Ln−m+1. Again,
the first two cases are easy and not of interest in our analysis.
In the last case, we can find a matrix D whose columns form an
orthonormal basis for V and define a nonsingular matrix H such
that {y ∈ Rn−m+1

: Dy ∈ Ln
} = HLn−m+1. Then we can represent

C equivalently as
C =


x ∈ Ln

: x = Dy, a⊤

mx = 1


= D

y ∈ Rn−m+1

: Dy ∈ Ln, a⊤

mDy = 1


= D

y ∈ Rn−m+1

: y ∈ HLn−m+1, a⊤

mDy = 1


= DH

z ∈ Ln−m+1

: a⊤

mDHz = 1

.

The set C = Ln
∩ E is a bijective linear transformation of

{z ∈ Ln−m+1
: a⊤

mDHz = 1}. Furthermore, the same linear
transformation maps any two-term disjunction in {z ∈ Ln−m+1

:

a⊤
mDHz = 1} to a two-term disjunction in C and vice versa. Thus,

without any loss of generality, we can takem = 1 in (1) and study
the problem of describing conv(C1 ∪ C2) where

C =

x ∈ Ln

: a⊤x = 1

,

C1 =

x ∈ C : l⊤1 x ≥ l1,0


, and

C2 =

x ∈ C : l⊤2 x ≥ l2,0


.

(2)

In Section 4 we will give a full description of conv(C1 ∪ C2) under
certain conditions.

3. Homogeneous two-term disjunctions on the second-order
cone

In this section,we study the convex hull of a homogeneous two-
term disjunction c⊤

1 x ≥ 0 ∨ c⊤

2 x ≥ 0 on the second-order cone.
Let

Q1 :=

x ∈ Ln

: c⊤

1 x ≥ 0


and Q2 :=

x ∈ Ln

: c⊤

2 x ≥ 0

. (3)

The main result of this section characterizes conv(Q1 ∪ Q2).
Note that Q1 and Q2 are closed, convex, pointed cones; therefore,
conv(Q1 ∪ Q2) is always closed (see, e.g., Rockafellar [17, Corollary
9.1.3]).

When Q1 ⊆ Q2, we have conv(Q1 ∪ Q2) = Q2. Similarly, when
Q1 ⊇ Q2, we have conv(Q1 ∪ Q2) = Q1. In the remainder of this
section, we focus on the case where Q1 ⊈ Q2 and Q1 ⊉ Q2.

Assumption 1. Q1 ⊈ Q2 and Q1 ⊉ Q2.

We also make the following technical assumption.

Assumption 2. Q1 ∩ intLn
≠ ∅ and Q2 ∩ intLn

≠ ∅.
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