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a b s t r a c t

We present a robust optimization approach to 0–1 linear programming with uncertain objective coeffi-
cients based on a safe tractable approximation of chance constraints, when only the first two moments
and the support of the random parameters are known. We obtain nonlinear problems with only one ad-
ditional (continuous) variable. Our robust optimization problem can be interpreted as a nominal problem
with modified coefficients. We compare our approach with Bertsimas and Sim (2003). In numerical ex-
periments, we obtain solutions of similar quality in faster time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider binary optimization problems with uncertain ob-
jective coefficients and investigate the models that arise from en-
forcing probabilistic constraints on the objective in the context
of robust optimization. Robust optimization is a worst-case opti-
mization approach where the worst case is computed over a given
uncertainty set that the unknown parameters belong to, centered
around their nominal values and of size reflecting the degree of the
decision maker’s aversion to ambiguity. The reader is referred to
Bertsimas et al. [4] for a review of robust optimization up to 2011
and Gabrel et al. [12] for a review of recent advances in robust
optimization. Providing an intuitive interpretation of uncertainty
sets has always been of importance to operations researchers: for
instance, Bertsimas and Sim [9] connect the choice of a key pa-
rameter in their approach, called the budget of uncertainty, with a
probability of constraint violation. More recently, Ben-Tal et al. [3]
describe a process where a ‘‘safe tractable approximation’’ of prob-
abilistic constraints leads to a robust optimization problem where
the uncertainty set is determined by the chosen approximation and
the probability level. Safe tractable approximations, the most fa-
mous of which is the Bernstein approximation, are motivated by
the fact that incorporating a chance constraint to a problem cre-
ates significant computational difficulties if the random variables
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do not obey a jointly Gaussian distribution. In Ben-Tal et al. [3], the
probabilistic constraint is replaced by a more tractable constraint
that, when satisfied, guarantees that the original constraint is sat-
isfied too.

Our goal in the present paper is to investigate the theoretical
and algorithmic insights we gain from the approach presented in
Ben-Tal et al. [3], in the special casewhere decision variables are bi-
nary, and to compare this approachwith that obtained in Bertsimas
and Sim [9]. Hence, wewill use the same description of uncertainty
based on range forecasts for each of the uncertainty parameters
and a budget of uncertainty. It is worth pointing out, however, that
other descriptions of uncertainty have been proposed since [9]. The
construction of uncertainty sets based on available data is investi-
gated for instance in Bertsimas et al. [6], who build their method
on statistical hypothesis tests and derive finite-sample probabilis-
tic guarantees for the optimal solutions they obtain. In the context
of mixed integer optimization, Bertsimas and Dunning [5] present
an adaptive partition approach based on Voronoi diagrams toMul-
tistage Adaptive Mixed Integer Optimization, which allows them
to gain insights into the regions of the uncertainty set restricting
the objective function values.

Distributionally robust optimization, where the uncertainty is
on the probability distributions obeyed by the random param-
eters rather than on the values taken by uncertain parameters
themselves, has been the focus of extensive research interest, for
instance in Wiesemann et al. [19], who introduce standardized
ambiguity sets containing all distributions with prescribed conic
representable confidence sets and provide conditions under which
distributionally robust optimization problems based on their am-
biguity sets are computationally tractable. Delage and Ye [11]
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combine the streams of distributionally robust optimization and
data-driven optimization with a focus on moment uncertainty.
Their model incorporates uncertainty in both the distribution form
(such as Gaussian or exponential) and the first two moments
(mean and covariance matrix), and can be solved efficiently for
a wide range of cost functions. Distributionally robust optimiza-
tion and its tractable approximations are also studied in Goh and
Sim [13] in the context of a linear programming problem with
uncertainties that has expectations in the objective and the con-
straints. Their framework leads to an approximate solution that
is distributionally robust and more flexible than linear rules. Un-
certainty sets in distributionally robust optimization have been
studied using Kullback–Leibler divergences, which originated in
information theory andmeasures the distance between two distri-
butions (Hu and Hong [15]) and, more generally, Phi-divergences,
of which Kullback–Leibler are a special case (Love and Bayraksan
[17]). Phi-divergences representing uncertainty in optimization
problems affected by uncertain probabilities are also investigated
in Ben-Tal et al. [2]; the authors show that the robust counterpart
of a linear optimization problem with phi-divergence uncertainty
is tractable for most choices of phi typically considered in the liter-
ature. Additional references for distributionally robust optimiza-
tion are provided in [12]. Robust integer programming, which is
at the core of the present paper, has received less attention in
the literature after [9]. Wagner [18] provides a robust formulation
of a stochastic 0–1 linear programming problem for which only
the first k moments of the random parameters are known. Hana-
susanto et al. [14] focus on two-stage problems with integer re-
course and approximate two-stage robust binary problems with
K -adaptability problems, where the decision maker designs in ad-
vance (here and now) K second-stage policies and implements the
best of the K policies once uncertain parameters have been ob-
served.

We make the following contributions to the literature. (i) We
provide robust formulations when we only know the first two
moments and the support of the distributions of the uncertain
parameters. (ii) We show that the safe tractable approximation
(Bernstein approximation) in our setting can be interpreted as a
deterministic problem with modified cost coefficients that only
dependonproblemdata andone extra coefficient. (iii)We compare
our approach in numerical experiments with that in Bertsimas and
Sim [9] for the same problem setting but for a differentmodeling of
uncertainty in robust optimization and argue that, while solution
quality is comparable, the solution times in our approach are
substantially smaller.

2. The safe tractable approximation

We consider the following problem with uncertain objective
coefficients.

max c′x
s.t. x ∈ X ⊆ {0, 1}n. (1)

Because the vector c is not known precisely, our goal here will be
to maximize the greatest parameter A such that:

P

c′x < A


≤ ϵ, (2)

for ϵ > 0 given (small). We first assume that the random coeffi-
cients are independent, andwill relax this assumption in Section 4.
When distributions are continuous, A can be interpreted as the ϵ-
quantile of c′x.

Specifically, the stochastic problem we consider is:

max inf
P∈P

P-VaRϵ(c′x)
s.t. x ∈ X ⊆ {0, 1}n,

(3)

where P-VaRϵ(ξ̃ ) = supA∈R{A : P(ξ̃ < A) ≤ ϵ} denotes the
ϵ-Value-at-Risk of a random variable ξ̃ that obeys the probability
distribution P, and P denotes the ambiguity set for the probabil-
ity distribution, i.e., the distributions deemed compatible with the
decision maker’s information about the random objective coeffi-
cients.

We are interested in deriving a deterministic tractable counter-
part to our problem when only a limited amount of information is
known: the mean, variance and support of each uncertain param-
eter. Knowledge of the first two moments is a common assump-
tion in distributionally robust optimization (see Gabrel et al. [12]
and the references therein), while knowledge of the support is
the foundation of the polyhedral uncertainty sets in Bertsimas and
Sim [10].

Lemma 2.1. If E[exp{−θci}] can be computed efficiently for all i and
any θ > 0, a safe tractable approximation to Problem (3) is:

max
θ, x

ln ϵ

θ
−

1
θ

n
i=1

lnE[exp{−θci}] · xi

s.t. x ∈ X ⊆ {0, 1}n, θ > 0.
(4)

Proof. FromBen-Tal et al. [3], Eq. (2) can bewritten as,with θ > 0:

P


−θ

n
i=1

cixi > −θA



= P


exp


−θ

n
i=1

cixi


> exp{−θA}


≤ ϵ.

Since the exponential function is nonnegative and nondecreasing,
we invoke Markov’s Inequality and inject that the coefficients are
independent:

P

c′x < A


≤

E

exp


−θ

n
i=1

cixi


exp{−θA}

=

n
i=1

E[exp{−θcixi}]

exp{−θA}
. (5)

The safe tractable approximation replaces P

c′x < A


≤ ϵ withn

i=1 E[exp{−θcixi}]
exp{−θA}

≤ ϵ, thus guaranteeing that the original proba-
bilistic constraint is satisfied. Taking the logarithm of the left and
right-hand sides leads to the greatest possible value of A being
ln ϵ
θ

−
1
θ

n
i=1 lnE[exp{−θcixi}]. We conclude by using that the xi

are binary, so lnE[exp{−θcixi}] = lnE[exp{−θci}] · xi ∀i. �

However, in our problem setup, the expected values of the ran-
dom parameters exp{−θci}, i = 1, . . . , n are not known exactly;
instead, only the first two moments and the support of the ran-
domparameters are known. Therefore,we seek tight upper bounds
of these expected values by adapting the linear semi-infinite opti-
mization approach of Bertsimas and Popescu [7,8].

Lemma 2.2. Consider a random parameter c. From a probabilistic
perspective, let µ be its (known) mean and σ its (known) standard
deviation. From a robust optimization perspective, let c̄ be its nominal
value and ĉ be the half-width of its range forecast or confidence inter-
val, i.e., let [c̄−ĉ, c̄+ĉ] be the support of the uncertain parameter.We
assume c̄ = µ. Finally, let m be a positive number such that ĉ = m σ
for m ≥ 1 and let π be the set of such possible distributions. Then,

max
f∈π

Ef [exp{−θc}] =
exp{−θ c̄}
m2 + 1

·


exp{θ ĉ} + m2

· exp

−

θ ĉ
m2


. (6)



Download English Version:

https://daneshyari.com/en/article/1142256

Download Persian Version:

https://daneshyari.com/article/1142256

Daneshyari.com

https://daneshyari.com/en/article/1142256
https://daneshyari.com/article/1142256
https://daneshyari.com

