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a b s t r a c t

Variance swaps are among the most useful tools for derivatives trading and risk management. For pricing
discretelymonitored variance swapsunder a general class of jump–diffusionmodels,wepropose a closed-
form expansion based on the length of monitoring interval. Our method relies on an iterative application
of the Dynkin formula, which is usually called the operator method in financial econometrics. Numerical
examples are given for demonstrating the efficiency of the method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A variance swap is a financial derivative that allows one to
speculate on or hedge risks associated with the volatility of some
underlying assets like a stock index, exchange rate, or interest rate.
One leg of the swap pays an amount based on the realized variance
of the return of the underlying asset. The other leg of the swap pays
a fixed amount, which is the fair strike and is determined so that
the arbitrage-free price of the swap is zero at the inception of the
contract. See, for example, [12,11], and Chapter 11 [16] for details.

Conventionally, the realized variance is usually calculated as
an annualized total sum of squared log returns. The theory of
quadratic variation guarantees that such a notion based on dis-
cretely monitored paths of the underlying asset price converges
to an annualized integral of variance, a continuous approximation
of realized variance, which has been extensively applied by most
studies in pricing or measuring volatility risk owing to its mathe-
matical convenience, see, for example, the survey and discussions
in [20]. However, as pointed out in [17], when pricing variance
swaps with relatively small maturities, pricing errors are usually
significant, if one employs the annualized integral of variance as
a proxy of the realized variance. Investigations on the differences
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and convergence properties between discretely monitored real-
ized variance and its continuous counterpart can be found in, for
example, [8,20]. Among others, this finding motivates the chal-
lenging study of pricing discretely monitored variance swaps di-
rectly using annualized total sum of squared log returns. For affine
stochastic volatility (with jump) models (see, for example, [13]),
various analytical methods for pricing related derivatives can be
found in, for example, [8,34,33,30].

In this paper, we propose a closed-form expansion method for
pricing discretelymonitored variance swaps in an arbitrary class of
stochastic volatility with jump models with flexible specifications
without particular assumptions like affine structures. Thus, our
method broadens the scope of analytical pricing methods to a
wider range of models. The expansion is convenient to implement
symbolically in any symbolic softwares (e.g., Mathematica) and
can be saved as pricing formulas for numerical calculations, which
can be done almost instantaneously. Thus, comparing with Monte
Carlo simulations, a significant reduction of CPU computing time
can be achieved.

Our expansion method roots in iterative applications of the
celebrated Dynkin formula for Markov diffusion models, see, for
example, Chapter 7 in [29]. As a stochastic generalization of the
fundamental theorem of classical calculus, the Dynkin formula
centralizes the theory and application of stochastic calculus. It ren-
ders the expected value of smooth functionals of a diffusion at
a stopping time. Iterative applications of this formula (iterated
Dynkin formula hereafter) result in a stochastic analogy of the
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Taylor expansion in classical calculus. Thus, it provides us with a
tool for developing a closed-form series expansion based on the
length of the monitoring interval of the variance swaps. As shown
momentarily, mathematical treatment is needed to handle the
path-dependency nature of the variance swap. Known as the oper-
ator method, iterated Dynkin formulas have established their im-
portant roles in financial econometrics, see, for example, [21,1,2],
as well as [3] and the references therein. Our expansion can be re-
garded as a small-time type expansion for smooth Wiener func-
tionals. Relying on the theory of [31,32], applications of small-time
expansions to non-smooth generalized Wiener functionals can be
found in, for example, [23,25,10].

The rest of the paper is organized as follows. In Section 2, we
set up the definition of discretely monitored variance swaps and
the model. In Section 3, we propose the closed-form expansion
method. For the purpose of illustration, numerical experiments
are given in Section 4. We conclude the paper in Section 5. As an
online supplementary material (see Appendix A), Li and Li [26]
collects more details on the computational results, an illustration
of expansion formulas, and an interpretation of our expansions.

2. The model and basic setup

2.1. Variance swaps

Assume that the asset prices are observed discretely at tj = j∆,
where j = 0, 1, 2, . . . , and∆ represents the length of themonitor-
ing interval of the variance swaps, for example, ∆ = 1/252, 1/52,
and 1/12 for daily, weekly, and monthly, respectively. For a time
horizon withm such periods, the realized variance over [0,m∆] is
defined as

RVm,∆ =
1

m∆

m
j=1


log

Stj
Stj−1

2

.

Then, the payoff of a variance swap with maturity T = m∆ is de-
fined as (RVm,∆ − K ∗) × N , where K ∗ is the fair strike making the
initial arbitrage-free price of this swap zero and N is the notional
amount of the swap, see, for example, explanations in [9]. Thus, we
have

K ∗
= E[RVm,∆] =

1
m∆

m
j=1

E


log

Stj
Stj−1

2

, (2.1)

where the expectations are calculated under the risk-neutral prob-
ability measure for derivatives pricing.

2.2. The model

Under the risk-neutral probabilitymeasure, we assume that the
price of an asset is governed by the following stochastic differential
equation (SDE hereafter):

dSt
St

= (r(Xt) − d(Xt) − λµt)dt +

d
i=1

σi(Xt)dW
(i)
t + dJt ,

S0 = s0. (2.2)

Here, X is an n dimensional diffusion governed by

dXt = α(Xt)dt + β(Xt)dWt , X0 = x0, (2.3)

where W = (W (1),W (2), . . . ,W (d))⊤ is a d dimensional standard
Brownian motion; r(x), d(x), and σi(x), i = 1, 2, . . . , d, are func-
tions from Rn to R; α(x) = (α1(x), α2(x), . . . , αn(x))⊤ is an n di-
mensional vector-valued function and β = (βij(x))n×d is an n × d
matrix-valued function.Here, r(Xt) and d(Xt) represent the spot in-
terest rate and the dividend rate, respectively. J is an independent

compound Poisson process defined by Jt =
Nt

k=1 (exp(Zk) − 1),
where N is a Poisson process with intensity λ; Zk’s are identically
independently distributed random variables representing jump
sizes with µ = E (exp(Zk) − 1) .

This model nests many sophisticated models proposed in the
literature of derivatives pricing, for example, stochastic volatility
models in [19,18,5], multifactor stochastic volatility models in
[6,13,17,14], jump–diffusionmodels in [27,22], stochastic volatility
with jump models in [6,13,7,4].

3. A closed-form expansion approach for pricing variance
swaps

3.1. The operator method

Our closed-form expansion hinges on the following stochastic
analogy of the Taylor expansion. Suppose that ξ is an r dimensional
diffusion model governed by the following SDE:

dξt = a(ξt)dt + b(ξt)dWt . (3.1)

For a smooth enough function f taking values in Rr and any t > 0,
the expectation Ef (ξt) admits the following Taylor-like formula

Ef (ξt) =

K
k=0

Lkf (ξ0)
tk

k!
+ RK+1, (3.2)

for any arbitrary order K , where L is the infinitesimal generator of
(3.1), i.e.,

L =

r
i=1

ai(ξ)
∂

∂ξi
+

1
2

r
i,j=1

(b(ξ)b⊤(ξ))i,j
∂2

∂ξi∂ξj
, (3.3)

with (b(ξ)b⊤(ξ))i,j referring to the i, jth element of the matrix
b(ξ)b⊤(ξ), and RK+1 is the remainder term taking the following
‘‘differential form’’:

RK+1 =
tK+1

(K + 1)!
E

LK+1f (ξs)


, (3.4)

for some 0 ≤ s ≤ t , or ‘‘integral form’’:

RK+1 =

 t

0

 s1

0
· · ·

 sK

0
ELK+1f (ξsK+1)dsK+1 · · · ds2ds1. (3.5)

Because this formula could be easily proved by iterative appli-
cations of the Dynkin formula (see, for example, Chapter 7 in [29]),
it is often referred to as an iteratedDynkin formula, which has been
widely applied as a tool in stochastic analysis and various applica-
tions. As shown momentarily in the next section, we focus on the
case of f being a polynomial in the underlying diffusion ξ . Subject
to some technical sufficient conditions, the remainder term RK+1
in (3.2) can be understood as o(tK ) as t → 0. For example, if, for
any integer k > 0, any arbitrary kth order derivative in ξ of the
functions a(ξ) and b(ξ) exists and is bounded for any ξ in the state
space of the process ξ , there exists a positive constant CK such that

|RK+1| < CK tK+1. (3.6)

The proof of this claim follows from standard tools for analyzing
stochastic differential equations, see, for example, the arguments
in Section 2.2 of [28] and Lemma 2 in [24] as well as Theorem 2.2
in [31]. Owing to the length limit of this paper, we omit the proof.
Furthermore, theoretical relaxation of the aforementioned suffi-
cient conditions for (3.6) can be regarded as a future research topic.

Thus, the formula (3.2) can be regarded as a stochastic analogy
of the celebrated Taylor expansion in classical calculus, which ren-
ders a local property (as t → 0) rather than giving a full investi-
gation on the radius of convergence. Thus, the expansion

K
k=0 Lk
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