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a b s t r a c t

We present a new class of upper bounds for the Monte Carlo pricing of Bermudan derivatives. This
class contains both the additive and multiplicative upper bounds as special cases. We also see that the
hypothesis that the pay-off is positive for the multiplicative upper bound is unnecessary. The variance of
these upper bounds is zero when the optimal hedge is chosen.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years much progress has been made on the develop-
ment of methodologies for finding the prices of early exercisable
derivatives by Monte Carlo simulation. For a long time, the focus
was mainly on lower bounds with bundling and regression-based
methods proving effective such as Carrière, [5], Tsitsiklis and Van
Roy, [17], Longstaff and Schwartz, [14] proving popular and effec-
tive. However, it is very hard to be confident that a lower bound
price is accurate without a corresponding upper bound for com-
parison. A second stream of research has therefore developed in
recent years focused on the problemof how to find anupper bound.
There have been twomain approaches generally referred to as ‘‘ad-
ditive’’ and ‘‘multiplicative’’. The purpose of this paper is to develop
a new class of upper bounds which unifies these two approaches
and contains them both as simple special cases.

Inspired by work of Davis and Karatzas, [8], the additive ap-
proach discovered independently by Rogers, [15], and Haugh and
Kogan, [9], relies on a decomposition of the price process of the un-
exercised option into amartingale and an increasing process. It can
be viewed as a seller’s price: it is the cost of hedging the early exer-
cisable derivative no matter when the buyer exercises even if the
buyer possesses additional information. This philosophical point
of view is discussed in detail in [11,12]. There have now been nu-
merous papers on the method with the most popular implemen-
tation methodology being that of Andersen and Broadie, [1]. Their
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approach is to use the product itself with a sub-optimal exercise
strategy as a hedge and it thus relies on sub-simulations.

The multiplicative method introduced by Jamshidian, [10],
has proven less popular. The essential difference is that the
unexercised option price is written as product of a martingale
and an increasing process rather than a sum. The principal reason
for this difference in popularity is probably that, as Chen and
Glasserman, [7], observe, the variances achieved by themethod are
much higher. In particular, when the hedge is optimal the additive
method has zero variance and the multiplicative method does not.
However, Joshi and Tang showed in [13] that the use of a simple
control variate renders themultiplicativemethod competitive. The
lack of popularity is therefore no longer justified. In addition, in its
original formulation the final pay-off had to be positive rather than
non-negative. However, that restriction is also no longer necessary
and our general result here only requires non-negativity.

In this note, we develop a new class of upper bounds that
relies on the choice of two martingales. The class contains both
the additive upper bound and the Joshi–Tang formulation of the
multiplicative one. The key idea lies in how mismatched cash-
flows are reinvested: the additive upper bound implicitly assumes
the numeraire, and the multiplicative one the product itself.
However, any positive product could be used and each choice leads
to a different upper bound.

There have been various improvements to the original additive
and multiplicative methods. The original methods require taking a
maximum along a path. This maximum can occur even when the
option is out of the money and so exercise would never happen
there. [2,12] show that one can restrict the maximum to points in
the money for t < T . More generally, once one has proven that
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the optimal strategy lies in a given class, one can also restrict the
maximum to the same class, [4]. Whilst we do not explicitly prove
these results for our new class of upper bounds, it is clear that they
go over when appropriately formulated.

2. Setup and review

We establish notation. Throughout, we will work with deflated
prices.We let (Zj), j = 0, . . . , T be a non-negative adapted process
on a filtered probability space (Ω, F , F, P). We assume for some
p, Zj ∈ Lp. The holder of the Bermudan derivative receives the
non-negative deflated pay-off, Zj, at time j if they exercise at time
j. We shall assume that the derivative cannot be exercised at time
zero, and must be exercised at time T if it has not been previously
exercised. This simplifies the mathematics in that we do not have
to deal with the case of non-exercise and an exercise out of the
money at maturity simply yields a zero cash flow.

We will work in a fixed martingale measure throughout. We
assume that a numeraire has been fixed and that all prices have
been deflated by it. Let Dt be the deflated price of the derivative at
time t if it has not been previously exercised.

The Rogers/Haugh–Kogan additive method, [15,9], requires us
to find a martingaleMt . The upper bound is then given as

D0 ≤ M0 + E(max
j

(Zj − Mj)).

The inventors of the method showed that if Mj is chosen to be
the deflated price process of the product itself with the optimal
exercise strategy and correct reinvestment strategy the upper
bound is the true price. The reinvestment strategy is that at time of
exercise, one must ‘‘buy’’ the product with one less exercise date
using the exercise value. Since the strategy is optimal, this will
always leave a positive surplus which is used to buy units of the
numeraire, whose deflated value is necessarily constant. See [10]
for this interpretation. The authors did not view themethod in this
fashion, however, and instead definedMj to be the martingale part
of the additive Doob–Meyer decomposition of the value ofDt . Thus

Mt = Dt + B∗

t

with B∗
t non-negative and increasing.

Jamshidian’s multiplicative method can be viewed in terms of
a multiplicative Doob–Meyer decomposition. The surplus cash on
exercise is used to buy more units of the original product rather
than the numeraire. In addition, all pay-offs are evaluated in terms
of how much product they will buy rather than being converted
to numeraire bonds. If Xt is a positive martingale, this leads to an
upper bound

D0 ≤ E

max

t


Zt
Xt


XT


.

The optimal Xt which yields equality is of the form

Xt = DtA∗

t

with A∗
t ≥ 1 and increasing. Our purpose in the rest of this paper

is to develop a method containing both of these as special cases.

3. Upper bounds

LetM denote the class ofmartingaleswith respect to {Ft}. LetX
denote the subset of M consisting of processes which are positive
for t < T and non-negative for t = T . Let Dt denote the deflated
value of the derivative at time t assuming non-exercise before t .
Note that Dt is not a martingale. In what follows τ will always
denote a stopping time.

Our main result is

Theorem 1. Let X ∈ X then

sup
τ

E(Zτ ) = inf
M∈M


M0 + E


max

t


(Zt − Mt)

XT

Xt


where XT/XT is taken to be 1 if XT = 0. If Mt = AtDt + Bt for any
At , Bt with A0 = 1, At ≥ 1 and B0 = 0, Bt ≥ 0 then the infimum is
attained and the equality is almost sure. Such processes Mt exist and
it is possible to take At = 1, ∀t, with Bt increasing, or Bt = 0, ∀t, and
At increasing.

This theorem with ≤ will trivially hold for any subset of M.
If the subset contains one of the optimal martingales, AtDt + Bt ,
then equality is achieved. Thus we could replace M with X if we
so desired. Note that we have not required monotonicity of At and
Bt . This theorem is a little asymmetric in that we optimize overMt
whilst fixing Xt . Could we do the opposite? The argument of [10]
would apply and make this work if and only if we are guaranteed
the positivity of ZT −MT . Such a condition appears unnatural so we
do not pursue that approach.

3.1. Additive as special case

First, to see that the additive result is a special case of this, set
Xt = 1 for all t . We then have

sup
τ

E(Zt) = inf
M∈M


M0 + E


max

t
(Zt − Mt)


with almost sure equality for the optimal choice of Mt = Dt + B∗

t .
This is precisely the additive dual.

3.2. Multiplicative as special case

Relating this result to the multiplicative dual is more interest-
ing. Of course, Jamshidian’s original upper bound did not attain al-
most sureness even for the optimal bound so this is not identical.
However, Joshi and Tang, [13] show that the same upper bound can
be obtainedwith zero variance by the use of an appropriate control
and it is that upper bound that we replicate. Using Theorem 1, we
can take At = A∗

t ≥ 1, Bt = 0 and set Mt = Xt = AtDt , and we
obtain equality with Xt in the Jamshidian form, and Xt ∈ X. Since
X ⊂ M, an infimum over it must be at least as large as one over
M, we therefore have, using the fact that equality is obtained,

sup
τ

E(Zt) = inf
X∈X


X0 + E


max

t
(Zt − Xt)

XT

Xt


, (3.1)

= inf
X∈X


X0 + E


max

t


Zt
Xt

− 1

XT


, (3.2)

= inf
X∈X


X0 + E


max

t


Zt
Xt


XT


− XT


, (3.3)

= inf
X∈X

E

max

t


Zt
Xt


XT


. (3.4)

The second last expression is the Joshi–Tang result and the final one
is Jamshidian’s result. The passing of XT through the expectation
at the final line destroys the almost sureness even when XT is
optimal. This is actually a little better than Jamshidian’s result in
that his derivation requiredXT > 0. An extension to the casewhere
XT = 0with positive probabilitywas included in [12] under certain
additional assumptions. We will see that those assumptions are
unnecessary.

3.3. Financial intuition

Before proceeding to a formal proof of Theorem 1, we discuss it
in financial terms. See [11,12] for more background. An alternate
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