
Operations Research Letters 43 (2015) 586–591

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Using shortcut edges to maximize the number of triangles in graphs
Sina Dehghani b, Mohammad Amin Fazli a,∗, Jafar Habibi a, Sadra Yazdanbod c

a Computer Engineering Department, Sharif University of Technology, Iran
b School of Computer Science, University of Maryland at College Park, United States
c School of Computer Science, Georgia Institute of Technology, United States

a r t i c l e i n f o

Article history:
Received 30 October 2014
Received in revised form
1 September 2015
Accepted 1 September 2015
Available online 16 September 2015

Keywords:
Triangles
Graphs
NP-complete
Approximation algorithm

a b s t r a c t

In this paper, we consider the following problem: given an undirected graph G = (V , E) and an integer k,
find I ⊆ V 2 with |I| ≤ k in such a way that G′ = (V , E ∪ I) has the maximum number of triangles (a cycle
of length 3). We first prove that this problem is NP-hard and then give an approximation algorithm for it.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problem of augmenting networks in order to optimize their
properties has been extensively tackled with a number of different
approaches in recent years. The main goal of such augmentation is
to improve network efficiency or constructingmodelswith desired
properties.

In general, to improve the network efficiency onewould have to
either change the transmission protocols [17,26,28] or change the
underlying structure [4,8,32,9,20]. To support the latter approach,
which is the main focus of this paper, an active line of research
studies the impact of different structural properties on the per-
formance of different network dynamics [14,29,1,31]. Therefore, to
improve different network dynamics, we can optimize their asso-
ciated structural properties.

The second important application of such network optimization
problems, is to calibrate structural network models. These models
are simply artificial graphs generatedwith real network properties
and are used as a base for simulating different network dynamics.
The main goal of these models is to study network behaviors
under different conditions. Although numerous structural network
models have been proposed over the years, none of them is
complete because each focuses on only a subset of these properties
and thus misses the others [30,3,2,18]. When a model N does not

∗ Corresponding author.
E-mail address:mohammadamin.fazli@gmail.com (M.A. Fazli).

satisfy a property P , we can calibrateN by optimizing P withminor
modifications to the structure of N .

While heuristics have been applied extensively for a wide
range of network properties such as diameter and average path
length [23], robustness [16,4,32,21] and synchronizability [8,21],
approximation algorithms with guaranteed approximation factors
have not received much attention. To the best of our knowledge,
the only structural properties for which approximation algorithms
and non-approximability results are proposed, are diameter,
average path length [20,9,6,7] and Eulerian extension [10,15].

A high density of triangles (a cycle of length 3) is a beneficial
structural property of graphs. The main behavior of graphs with
this property is their fast collective dynamics [24,27]. Examples of
such dynamics can be seen in a wide variety of fields such as re-
laxation oscillations in gene regulatory networks [19,11], synchro-
nization in biological circuits [14,13], opinion formation in social
networks [25] and consensus dynamics of agents in multi agent
systems [22]. Thus, optimizing the number of triangles in networks
with minor changes in their structure is an important problem.

In this paper, we concentrate on the problem of changing the
structure of networks in a way that maximizes the number of their
triangles. The change in the structure is done through drawing
shortcut edges. We consider the limited budget case where we are
only allowed to purchase at most k such shortcut edges.

Definition 1 (Triangle-Max Problem). Given an undirected graph
G = (V , E) and an integer k <


|V |
2


− |E|. Find a set I ⊆ V 2 of

at most k shortcut edges (|I| ≤ k) such that T (G′) is maximized,

http://dx.doi.org/10.1016/j.orl.2015.09.003
0167-6377/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2015.09.003
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2015.09.003&domain=pdf
mailto:mohammadamin.fazli@gmail.com
http://dx.doi.org/10.1016/j.orl.2015.09.003

S. Dehghani et al. / Operations Research Letters 43 (2015) 586–591 587

where G′ = (V , E ∪ I) and T (G′) defines the number of triangles
in G′.

In this paper, we first show that Triangle-Max is NP-hard. Then
for instances of order n, we give a constant factor approximation
algorithm for k ≥ n and an O(n

1
4)-factor approximation algorithm

for k < n.

2. Hardness

In this section, our main goal is to prove the NP-hardness of
the Triangle-Max problem. First we define a modified class of
the problem in which we only want to maximize the number of
triangles with exactly i newly added edges.

Definition 2 (Triangle-Max(i) (for 1 ≤ i ≤ 3)). Let G = (V , E) be
an undirected graph and k <


|V |
2


− |E| be an integer. Find a set

I ⊆ V 2 of at most k shortcut edges such that Ti(G′, I) is maximized
whereG′ = (V , E∪I) and Ti(G′, I) defines the number of i-triangles
in G′ i.e. the triangles having exactly i edges in I .

Observation 1 shows that the Triangle-Max(1) problem can be
solved in polynomial time. A simple greedy algorithmwill work for
this problem. For each shortcut edge e = (u, v) ∉ E with u, v ∈ V ,
define F(e) to be the set of 1-triangles generated by drawing e. One
can see that for each e ≠ e′, F(e)∩ F(e′) = ∅, therefore selecting k
of these shortcut edges with maximum cardinality of F will obtain
the optimal solution.

Observation 1. Triangle-Max(1) is solvable in polynomial time.

Although Triangle-Max(1) is in P , the other two problems in
this class i.e. Triangle-Max(2) and Triangle-Max(3) are both NP-
hard. Theorems 1 and 2 prove the hardness of these problems.

Theorem 1. Triangle-Max(2) is NP-hard.

Proof. We shall reduce the densest k-subgraph problem (DkS) to
Triangle-Max(2) problem. The DkS problem is defined as follows:
Given a graph G with n vertices and an integer k ≤ n, the problem
is to find a subgraph ofG induced by k of its verticeswithmaximum
number of edges. Let G = (V , E) and k specify an instance of DkS.
Assume that V = {v1, v2, . . . , vn} and let x be the number of edges
in the densest subgraph of G of size k.

Algorithm 1 Reducing DkS to Triangle-Max(2)

input: G and k
output: One of the densest subgraphs of G with k vertices
1: Define V ′ = {v′1, v

′

2, ..., v
′
n} and U = {u1, u2, ..., un3}. Let

V (G′) = V ′ ∪ U ∪ {v}.
2: For each e = vivj ∈ E(G) draw an edge between v′i and v′j such

that G′[V ′] and G are isomorphic (G′[V ′] is the subgraph of G′
which is induced by V ′).

3: Draw an edge between all pairs of vertices in U such that G[U]
becomes a clique with n3 vertices.

4: Insert an edge between every two vertices v′i ∈ V ′ and uj ∈ U .
5: Set k′ = n3

+ k.
6: Solve Triangle-Max(2) on the input (G′, k′). Let Q be the set of

v’s neighboring vertices in the returned solution.
7: Define T to be a set of k randomly selected vertices from Q \U .
8: return vertices in G corresponding to those in T .

Algorithm 1 describes a polynomial-time reduction of the DkS
problem to the Triangle-Max(2) problem. In the steps of 1 through
4 of this algorithm, an instance (G′, k′) of the Triangle-Max(2)

problem will be built. G′ would be a combination of a clique with

Fig. 1. G′ graph.

n3 vertices, an isomorphic graph to Gwhose vertices are connected
to all vertices of the clique and an isolated vertex v (see Fig. 1).

We claim that any solution of Triangle-Max(2) to the instance
(G′, k′) gives a solution for the DkS problem to the instance (G, k)
by the steps 6 through 8 of Algorithm 1.

To prove this, first we need to show that all k′ edges in the op-
timum solution (which we call OPT from now) of Triangle-Max(2)

are adjacent to v. Let S be the set of edges in OPT which are not ad-
jacent to v. Edges in S connect vertices in V ′, so |S| ≤

n
2


. Thus the

number of edges adjacent to v is at leastn3
+k−

n
2


≥ n3
−n2. There

is an optimal solution where all these edges are adjacent to ver-
tices of U. We choose this optimal solution because in this case the
maximum number of 2-triangles can be generated. Hence adding
an edge to v would increase the number of 2-triangles by at least
n3
− n2.
By removing S’s edges, the number of 2-triangles would be de-

creased by at most

|S|
2


, because each pair of these edges can make

at most one 2-triangle. Therefore removing edges in S and adding
|S| adjacent edges to v instead, the number of 2-triangles would be
increased by at least

|S|(n3
− n2)−


|S|
2


≥ |S|


n3
− n2
−
|S| − 1

2


≥ n3
−

3
2
n2,

which is greater than 0 for n > 1. Thus, S = ∅, i.e. all edges in OPT
are adjacent to v.

Now, we prove that the set T returned by Algorithm 1 is one
of the densest subgraphs for graph G′[V ′] (and their correspond-
ing vertices in V (G) for G). Each edge in G′[Q] is included in only
one 2-triangle. So the number of 2-triangles created by the edges
in OPT is equal to the number of edges in G′[Q]. First, notice that
there exists a solution for Triangle-Max(2) to the instance (G′, k′)
which creates y =

n3
2


+ x+ k · n3 2-triangles. It is enough to con-

nect v to the vertices of U ∪ D where D is the set of vertices in the
densest subgraph of G′[V ′]. We will show that OPT cannot gener-
ate more than y 2-triangles and if the equation holds, T must be a
densest subgraph of G′[V ′].

T ⊆ V ′ and |T | = k, therefore the number of edges in G′[T] is
less than or equal to x. Also the number of edges in G′[Q \ T] is less
than or equal to

n3
2


, because Q \ T has exactly k′ − k = n3 ver-

tices. Moreover the number of edges between these two subgraphs
is less than or equal to k · n3. Thus the number of edges in G′[Q] is
less than or equal to y and the equality can only happen when T is
a densest subgraph of G′[V ′], G′[Q \ T] is a clique and all vertices
in T are connected to all vertices in Q \ T . �

Our next step is to prove the NP-hardness of the Triangle-
Max(3) problem.

Theorem 2. Triangle-Max(3) is NP-hard.

Download English Version:

https://daneshyari.com/en/article/1142271

Download Persian Version:

https://daneshyari.com/article/1142271

Daneshyari.com

https://daneshyari.com/en/article/1142271
https://daneshyari.com/article/1142271
https://daneshyari.com

