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a b s t r a c t

In this note we introduce the problem of assortment optimization over time. We have a sequence of time
steps and can introduce one new product per time step. Once introduced a product cannot be removed.
The goal is to determine which products to introduce so as to maximize revenue over all time steps under
some choice model. Given a 1/α-approximation algorithm for the capacitated assortment optimization
problem we give a 1/2α-approximation algorithm for this problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental problem in revenue management involves find-
ing a profitable assortment of products to offer to customers given
that customers choose within the offered assortment according to
a certain choicemodel. Themain tradeoff in this problem setting is
that if we offer a limited assortment, then customersmay often de-
cide to leave without making a purchase, but if we offer a wide as-
sortment, then we may end up adding products with low revenue
contributions to the assortment, whichmay dilute the revenue po-
tential. This fundamental tradeoff is often complicated by the fact
that it may take time for a firm to build up the product assortment
it wants to offer to its customers.

In this paper, we consider assortment optimization problems
over time,where a firmhas some initial product portfolio andmust
make a strategic decision to gradually change to some different
product portfolio in order tomaximize revenue.We consider a firm
that can initially drop anynumber of products from its portfolio but
must sequentially decidewhich product, if any, to add to its offered
assortment at each time period. The sequential nature of the prod-
uct addition into themarketplacemay be a result of product devel-
opment time or constraints on manufacturing volume. Customers
arriving at a particular time period choose among the current as-
sortment according to a particular choice model. The goal is to de-
cide how to build the product portfolio over time to maximize the
total expected revenue over a finite planning horizon.
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A special case of this sequential problem, when the initial
product portfolio is empty and the time horizon is at least the
number of products, is particularly relevant in online retail. When
a customer searches for a product on aweb site they are frequently
presentedwith a list of items available to purchase. Customer have
a finite patience level and, based on this patience level, will look
through some length of this list, form a consideration set to choose
from, and thenmake a purchasing decision from the consideration
set based on some choice model. The different patience levels
correspond to the different time periods in the sequential problem.
In this setting the firm must decide how to order the items on its
web site which, implicitly, is a decision about how to sequentially
add items to customers’ consideration sets.

There is growing literature on assortment optimization prob-
lems, as these problems are faced on strategic and tactical levels
in numerous retail and revenue management settings. In brick-
and-mortar retail, firms are interested in finding the right mix of
products to offer and such decisions are made infrequently on a
strategic level. In revenue management, airlines and hotels con-
tinuously update their product offerings in response to the re-
maining time in the selling horizon and the remaining capacity,
and so the assortment problems in those setting have more of
an operational nature. Several authors studied the so-called static
assortment problem, where the goal is to find an assortment of
products thatmaximizes the expected revenue obtained from each
customer. Talluri and van Ryzin [18] show that if the customers
choose according to the multinomial logit model, then the static
assortment problem can be solved efficiently by checking the ex-
pected revenue from each assortment that includes a certain num-
ber of products with the largest revenues. Rusmevichientong et al.
[17] solve the same problem when there is a limit on the number
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of products that can be offered. Bront et al. [3], Desir and Goyal
[8] and Mendez-Diaz et al. [15] study the static assortment prob-
lemwhen customers choose according to amixture ofmultinomial
logit models, show that the problem is NP-complete, strengthen
an integer programming formulation for the problem with valid
inequalities and propose various approximation schemes. Davis
et al. [7] consider the same problem under the nested logit model
and show that the corresponding static assortment problem can be
solved efficiently. Alptekinoglu and Semple [1] focus on static as-
sortment problemswhen customers choose under the exponomial
choice model.

In dynamic assortment problems, the offered assortment is
adjusted over time, possibly due to depleted product inventories,
better understanding of customer choice processes or changes in
customer tastes. Honhon et al. [13] and Mahajan and van Ryzin
[14] study the problem of finding an assortment to offer and the
corresponding stocking quantities with the understanding that
customers choose only among the products that are still in stock.
Bernstein et al. [2] and Golrezaei et al. [12] consider the problem
of dynamically customizing the assortment offerings based on the
preferences of each customer and remaining product inventories.
Caro et al. [5] and Cinar and Martinez-de-Albeniz [6] study
assortment problems where the attractiveness of the products
diminishes over time and they seek optimal policies to replace such
products. Caro and Gallien [4] and Ulu et al. [19] develop models
where the assortment offering needs to be adjusted over time in
response to a better understanding of the customer choice process.

The rest of the note is organized as follows. Section 2 describes
our assortment problem, where the firm needs to gradually build
its product portfolio, and introduces the two problem settings.
Section 3 analyzes approximation algorithms for the first problem
setting and Section 4 analyzes approximation algorithms for the
second setting. Section 5 discusses the complexity of the problem.

2. Preliminaries

Let N be the set of items that can be offered for sale, and let
n = |N|. We let rj be the revenue earned when item j is sold. Let
Pj(S) be the probability that item j is purchased if S ⊆ N is offered
for sale; then Pj(S) = 0 if j ∉ S.

Wewish to study the assortment optimization problem over time.
Intuitively, we start with some initial set of items being offered
and would like to remove items from this initial set, followed by
sequentially adding items, atmost one item at each of T time steps,
so that we maximize the overall expected revenue achieved over
the given time horizon. The items we remove from the initial set
are removed before the beginning of the first time period. Once
an item is offered for sale, it remains available to purchase for the
remainder of the time horizon. More precisely, given an initial set I
wewould like to find sets S0, S1, S2, . . . , ST such that S0 ⊆ I, |St | ≤

|S0| + t for all 1 ≤ t ≤ T , and S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ ST that
maximizes

T
t=1 R(St). Note that S0, the set of itemswe retain from

I , does not appear in the expression for expected revenuewewould
like to maximize.

We consider two problem settings. In the first setting we
consider choice models where two properties hold. First,

Pj(S) ≥ Pj(T ) ∀T ∀j ∈ S ⊂ T ;

that is, the probability of purchasing item j cannot increase if we
offer a larger set of items. This holds for any utility maximization
models, for example. Second,


j∈S Pj(S) ≤ 1 for any non-empty

set of items S. If an assortment S is offered for sale, then with
probability 1 −


j∈S Pj(S), no item is purchased. The expected

revenue for a set S of items is R(S) =


j∈S rjPj(S). For lack of
a better term, let us call such choice models monotone choice

models. The multinomial logit and nested logit choice model are
two examples of a monotone choice models.

For our first result, we will use a solution to the assortment
optimization problem in which there is a capacity c on the number
of items that can be offered for sale; that is, wewish to find a set S∗

c
with |S∗

c | ≤ c that maximizes R(S∗
c ). We call this the capacitated

assortment optimization problem. For an optimal solution S∗
c , let

OPTc be the expected revenue obtained; that is, OPTc = R(S∗
c ).

For our first result, we will suppose that we have a polynomial-
time 1

α
-approximation algorithm for the capacitated assortment

optimization problem under the given monotone choice model.
The algorithm is guaranteed to find a set with revenue at least
1
α
OPTc . For example, there are algorithms that find assortments of

value exactly OPTc for themultinomial logit and nested logit choice
models (see [11,17]).

In the second problem setting, we will consider the case in
which we only know that the revenue function R(S) is monotone
(that is, R(S) ≤ R(T ) for any S ⊆ T ⊆ N) and submodular (that is,
for any j ∉ S ⊆ T ⊆ N , then R(S ∪{j})−R(S) ≥ R(T ∪{j})−R(T )),
without knowing anything about the underlying choice model.
We present an example of a choice model that satisfies these
properties in the section showing our hardness result. Additionally,
in this setting we assume that our initial set of items I = ∅.

For our second result, we will use a well-known greedy (1 −

1/e)-approximation algorithm for finding a maximum valued set
S with |S| ≤ c for any monotone, submodular set function due
to [16]. The greedy algorithm repeatedly chooses an element to add
to the set S until |S| = c , and each time adds the element in N − S
that maximizes the marginal gain; that is, it selects j ∈ N − S that
maximizes R(S ∪ {j}) − R(S) and adds it to S.

3. Monotone choice model

In this section, we first give a 1/2-approximation algorithm
for the assortment optimization problem over time for mono-
tone choice models, given an exact polynomial-time algorithm
for the capacitated assortment optimization problem under the
choice model. From this result it is straightforward to gen-
eralize and achieve a 1/2α-approximation algorithm given a
1/α-approximation algorithm for the capacitated assortment op-
timization problem. We then give a (1 − 1/e)-approximation al-
gorithm for the assortment optimization problem over time for
monotone submodular revenue functions.

The first algorithm works as follows. We initially use the
polynomial-time algorithm to find an optimal assortment of at
most capacity t for all t, 1 ≤ t ≤ T . Let τ be the capacity for
which we get the largest revenue assortment and let Sτ be the
assortment. We set our initial set of items to be S0 = Sτ ∩ I . We
then order the items of Sτ/I by nonincreasing value of rjPj(Sτ ); we
will offer items for sale in this order. Let k = |Sτ/I|. Without loss
of generality, assume that items of Sτ/I are indexed by 1, 2, . . . , k
so that r1P1(Sτ ) ≥ r2P2(Sτ ) ≥ · · · ≥ rkPk(Sτ ). Then we set
S1 = S0 ∪ {1}, S2 = S0 ∪ {1, 2}, . . . , Sk−1 = S0 ∪ {1, . . . , k − 1},
and St = S0 ∪ {1, . . . , k} = Sτ for all k ≤ t ≤ T .

We now analyze the algorithm. Let OPT be the overall expected
revenue of an optimal assortment over time. We observe the
following.

Observation 3.1.

OPT ≤

T
t=1

OPTt ≤ T · OPTτ = T · R(S∗

τ ),

where OPTt = R(S∗
t ) is the optimal expected revenue for the capaci-

tated assortment optimization problem with capacity t, S∗
t is the op-

timal solution to this capacitated problem, and τ is such that OPTτ ≥

OPTt for 1 ≤ t ≤ T .
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