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a b s t r a c t

We are interested in a problem introduced by Vassilvitskii and Yannakakis (2005), the computation of
a minimum set of solutions that approximates within an accuracy ε the Pareto set of a multi-objective
optimization problem. We mainly establish a new 3-approximation algorithm for the bi-objective case.
We also propose a study of the greedy algorithm performance for the tri-objective case when the points
are given explicitly, answering an open question raised by Koltun and Papadimitriou in (2007).
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1. Introduction

In multi-objective optimization, in opposition to single objec-
tive optimization, there is typically no optimal solution i.e. one that
is best for all the objectives. Therefore, the standard situation is that
any solution can always be improved on at least one objective. The
solutions of interest, called efficient solutions, are these such that
any solution which is better on one objective is necessarily worse
on at least one other objective. In otherwords, a solution is efficient
if its corresponding vector of objective values is not dominated
by any other vector of objective values corresponding to a feasi-
ble solution. These vectors, associated to efficient solutions, are
called non-dominated points. For many multi-objective optimiza-
tion problems, one of the main difficulties is the large cardinal-
ity of the set of non-dominated points (or Pareto set). Indeed, it is
well-known, in particular, thatmostmulti-objective combinatorial
optimization problems are intractable, in the sense that they ad-
mit families of instances for which the number of non-dominated
points is exponential in the size of the instance [4]. Thus, instead
of producing the full set of non-dominated points, we may prefer
to provide an approximation of this set. This idea is represented by
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the concept of an ε-Pareto set, which is a set Pε of solutions that
approximately dominates every other solutions, i.e. such that for
every solution s, it contains a solution s′ that is better within a fac-
tor 1+ ε than s in all the objectives. The existence of ε-Pareto sets
of polynomial size is well-known [10] and polynomial time algo-
rithms that produce ε-Pareto sets have been developed and im-
proved formanymulti-objective optimization problems, including
Multi-objective Shortest Path [7,13,11], Multi-objective Knap-
sack [5,1]. However, note that there may exist many ε-Pareto sets,
some of which can have very small size and some others very
large size. An interesting problem introduced by [12] and contin-
ued in [3] is the efficient construction of ε-Pareto sets of size as
small as possible. This paper focuses on the same issue.

In the following section, we define the basic concepts, formalize
the problem and recall some results of previous related works.
Then, in Section 3, we mainly propose a new polynomial time
3-approximation algorithm of the size of a smallest ε-Pareto set
for the bi-objective case. In Section 4, we analyze the performance
of the greedy algorithmwhen the points of the objectives space are
given explicitly in the input and the number of objectives is three,
answering an open question raised in [9]. We conclude with some
possible extensions to this work.

2. Preliminaries

In this paper, we consider multi-objective optimization prob-
lemswherewe try tominimize several objectives, i.e.minx∈S{f1(x),
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. . . , fp(x)}, where f1, . . . , fp are p ≥ 2 objective functions and S is
the set of feasible solutions. In the case where some or all objective
functions are to be maximized, our results are directly extendable.

We distinguish the decision space X which contains the set S of
feasible solutions of the instance and the criterion space Y ⊆ Rp

which contains the criterion vectors or simply points. We denote
by Z = f (S) ⊆ Y the set of the images of feasible solutions called
feasible points.

We denote by yi the coordinate on criterion fi of a point y ∈ Y
for i = 1, . . . , p. We say that a point y dominates another point
y′ if y is at least as good as y′ in all the objectives, i.e. yi ≤ y′i
for all i = 1, . . . , p. A feasible solution x ∈ S is called efficient if
there is no other feasible solution x′ ∈ S such that f (x) ≠ f (x′)
and f (x′) dominates f (x). If x is efficient, z = f (x) is called a non-
dominated point in the criterion space. We denote by P the set of
non-dominated points, called Pareto set.

Given a constant c ≥ 1, a point y c-dominates another point y′
if y is at least as good as y′ up to a factor of c in all the objectives,
i.e. yi ≤ cy′i . For any rational ε > 0, an ε-Pareto set Pε is a subset of
feasible points such that for all z ∈ P , there exists z ′ ∈ Pε such that
z ′ (1+ ε)-dominates z. In the context of ε-Pareto sets, the central
relation is the (1+ ε)-dominance relation, denoted by≼ε .

For a given instance I , theremay exist several ε-Pareto sets, and
these may have different sizes. It is shown in [10] that, for every
classical multi-objective optimization problem, an ε-Pareto set of
size polynomial in the input size and 1/ε always exists. Moreover
its computation is related to the computation of the following
routine GAPδ .

Given an instance I of a given problem, a point y and a rational
δ ≥ 0, the routine GAPδ(y) either returns a feasible point that
dominates y or reports that there does not exist any feasible point
z such that zi ≤

yi
1+δ

for all i = 1, . . . , p.
We say that routineGAPδ(y) runs in polynomial time (resp. fully

polynomial time when δ > 0) if its running time is polynomial in
|I| and |y| (resp. |I|, |y|, |δ| and 1/δ). An ε-Pareto set is computable
in polynomial time (resp. fully polynomial time) if and only if
the routine GAPδ runs in polynomial time (resp. fully polynomial
time) [10].

Since an ε-Pareto set of polynomial size can still be quite large,
Vassilvitskii and Yannakakis investigate in [12] the determination
of ε-Pareto sets ofminimal size. These authors also propose generic
algorithms to dealwith this problem. An algorithm is called generic
if it does not depend on any particular problem and makes use
of general purpose routines for which only the implementation is
specific to the problem (GAPδ is such a general purpose routine). In
such algorithms it is only required to have bounds on theminimum
and maximum values of the objective functions. Assuming in the
following that the objective functions take positive rational values
whose numerators and denominators have at most m bits, any
feasible point has a value between 2−m and 2m and moreover the
difference between the values of any two solutions is at least 2−2m
for any criterion. From [10], optε is polynomial in the input size and
1/ε.

In order to use generic algorithms, Diakonikolas andYannakakis
introduced in [3] two other general purpose routines called
Restrictδ and DualRestrictδ for the bi-objective case.

Given an instance I , a bound b and a rational δ ≥ 0, the routine
Restrictδ(f1, f2 ≤ b) either returns a feasible point z satisfying
z2 ≤ b and z1 ≤ (1 + δ).min{f1(x) : x ∈ S and f2(x) ≤ b} or
correctly reports that there does not exist any feasible point z such
that z2 ≤ b.

Given an instance I , a bound b and a rational δ ≥ 0, the routine
DualRestrictδ(f1, f2 ≤ b) either returns a feasible point z satisfying
z2 ≤ b(1 + δ) and z1 ≤ min{f1(x) : x ∈ S and f2(x) ≤ b} or
correctly reports that there does not exist any feasible point z such
that z2 ≤ b.

We say that routine Restrictδ(f1, f2 ≤ b) or DualRestrictδ(f1, f2
≤ b) runs in polynomial time (resp. fully polynomial time when
δ > 0) if its running time is polynomial in |I| and |b| (resp. |I|,
|b|, |δ| and 1/δ). Routines Restrictδ(f1, f2 ≤ b) andDualRestrictδ(f2,
f1 ≤ b′) are polynomially equivalent as proved in [3].

In the routines considered in this paper we assume that the er-
ror δ is a rational number, otherwise it is approximated frombelow
by a rational number. We denote by P∗ε a smallest ε-Pareto set and
by optε its cardinality. It follows from [10] that optε is polynomial
in the input size and 1/ε.

We are interested in generic algorithms that compute in poly-
nomial time an ε-Pareto set of minimal size. For the bi-objective
case, a generic algorithm that computes an ε-Pareto set of size at
most 3optε was established in [12] using routines GAPδ . Moreover,
if the routine GAPδ runs in polynomial time (resp. fully polyno-
mial time) then the algorithm also runs in polynomial time (resp.
fully polynomial time). Then, it is shown in [3] that an ε-Pareto
set of size at most 2optε is computable in polynomial time if there
exists routines Restrictδ computable in polynomial time for both
objectives. These approximation results are tight for the class of
problems admitting such routines. An algorithm that computes an
ε-Pareto set of size at most k.optε is called a k-approximation al-
gorithm.

3. Two objectives

We first present a hardness result for the Bi-objective Knap-
sack problem then we propose a new generic algorithm that ap-
proximates the size of a smallest ε-Pareto set to a factor 3, which
is much simpler and, in some cases, more efficient than the one
presented in [12].

3.1. Approximation hardness for Bi-objective Knapsack

Diakonikolas and Yannakakis [3] showed that the size of
a smallest ε-Pareto set of Bi-objective Shortest Path and Bi-
objective Spanning Tree cannot be approximated within a factor
better than 2 in polynomial time, unless P = NP. These results
are tight since these two problems admit a routine Restrictδ that
runs in polynomial time, and thus an ε-Pareto set of size at most
2optε is computable in polynomial time as shown in [3]. Vassilvit-
ski and Yannakakis [12] showed that the size of a smallest ε-Pareto
set of an artificial variant of Knapsack, called Bi-objective 2-Type-
Knapsack, cannot be approximated within a factor better than 3 in
polynomial time, unless P = NP. This result is also tight since this
problem has a routine GAPδ that runs in polynomial time, and thus
an ε-Pareto set of size at most 3optε is computable in polynomial
time as shown in [12].

In this part, we investigate the status of the classical version,
called Bi-objective Knapsack, with as input a set Q of items,
a capacity c and for each item i two values v1(i), v2(i) and a
weight w(i). Values and weights are positive rationals. A solution
is a nonempty subset Q ′ of items with total values v1(Q ′) =

i∈Q ′ v1(i), v2(Q ′) =


i∈Q ′ v2(i) and a total weight w(Q ′) =
i∈Q ′ w(i) ≤ c. The goal is to maximize the values. First, note

that the size of a smallest ε-Pareto set of Bi-objective Knapsack
is approximable in polynomial time to a factor 3 since this
problem admits an FPTAS, which is equivalent to the existence of
a polynomial time routine GAPδ [5]. We prove that the size of a
smallest ε-Pareto set ofBi-objective Knapsack is not approximable
in polynomial time within a factor better than 3, if P ≠ NP.

Theorem 1. For Bi-objective Knapsack the size of a smallest
ε-Pareto set cannot be approximated within a factor better than 3 in
polynomial time, unless P = NP.
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