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a b s t r a c t

We study split cuts and extended formulations for Mixed Integer Conic Quadratic Programming (MICQP)
and their relation to ConicMixed Integer Rounding (CMIR) cuts.We show that CMIR is a linear split cut for
the polyhedral portion of an extended formulation of a quadratic set and it can beweaker than the nonlin-
ear split cut of the same quadratic set. However, we also show that families of CMIRs can be significantly
stronger than the associated family of nonlinear split cuts.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Split cuts [12], Gomory Mixed Integer (GMI) cuts [17], and
Mixed Integer Rounding (MIR) cuts [23,24] are some of the most
effective valid inequalities for Mixed Integer Linear Programming
(MILP) [8]. While they are known to be equivalent [15,24], each
of them provides different advantages and insights. In particular,
the split cuts construction shows that they are a particular case of
disjunctive cuts [3] and hence have a straightforward extension
to Mixed Integer Nonlinear Programming (MINLP). The study of
split cuts for MINLP is still muchmore limited than for MILP; how-
ever, there has been significant work on the computational use of
split cuts inMINLP [9,11,16,18,25] and a recent surge of theoretical
developments [1,2,4,5,14,19,21,22]. In particular, several formu-
las for split cuts for Mixed Integer Conic Quadratic Programming
(MICQP) have been recently developed [1,4,5,14,21]. While the re-
sulting cuts are strong nonlinear inequalities, adding these cuts to
the continuous relaxation of the MICQP can significantly increase
its solution time, which could negate the effectiveness of the cuts.
One potential solution is to use linearizations of these cuts [9,18],
but in this case there is a strong trade-off between their strength
and the computational burden of generating them. An alternative
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approach was introduced by Atamtürk and Narayanan [2] who use
the polyhedral portion of a nonlinear extended formulation (i.e., a
formulation with auxiliary variables) to construct an inexpensive,
but potentially strong, linear cut they denote the ConicMIR (CMIR).
In this paperwe attempt to broaden our understanding of split cuts
for MINLP by providing a precise link between the CMIRs and split
cuts for quadratic sets. In particular, this link provides a possible
solution to the trade-off between the strength and computational
burden resulting from adding the cuts to the relaxation.

Our first contribution is to show that the CMIR is a linear split
cut for the polyhedral portion of the nonlinear extended formula-
tion from [2]. Through this equivalence, we can extend the most
general version of the CMIRs to the case of variables with un-
restricted signs which was not previously possible. Our second
contribution is to give a precise relation between the CMIR and
nonlinear split cuts for quadratic sets. In particular, we show that,
since the CMIR construction does not consider any quadratic in-
formation, a single CMIR can be weaker than a single nonlinear
split cut. However, we also show that when families of split cuts
and CMIRs are considered, CMIRs can provide a significant advan-
tage over nonlinear split cuts by exploiting their commonextended
formulation. To the best of our knowledge, this is the first illustra-
tion of how the power of an extended formulation can improve the
strength of a cutting plane procedure in MINLP.

The rest of the paper is structured as follows. In Section 2 we
introduce some notation and describe previous results on CMIRs
and split cuts for MINLP. In Section 3 we establish the equivalency
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between CMIRs and linear split cuts for an extended formulation.
Finally, in Section 4we compare the strength of nonlinear split cuts
and CMIRs.

2. Notation and previous work

We let ei ∈ Rn and I ∈ Rn×n denote the ith unit vector and
the identity matrix where we omit dimension n if evident from the

context. We also let ∥x∥2 :=

n
i=1 x

2
i denote the Euclidean norm

of x ∈ Rn and |x| ∈ Rn be the vector whose components are the
absolute value of the components of x ∈ Rn. In addition, for a ∈ R
we let (a)+ := max {0, a} and ⌊a⌋ := max {k ∈ Z : k ≤ a}, and we
let [n] := {1, . . . , n}. Finally, for notational convenience, we define
split cuts while identifying a single set of integer variables x ∈ Zn

and three sets of continuous variables y ∈ Rp, t ∈ Rm, and t0 ∈ R.

Definition 1. Let K ⊆ Rn+p+m+1 be a closed convex set and
(π, π0) ∈ Zn

× Z. A split cut for K is any valid inequality for

Kπ,π0 := conv

{(x, y, t, t0) ∈ K : π T x ≤ π0}

∪ {(x, y, t, t0) ∈ K : π T x ≥ π0 + 1}


for some (π, π0) ∈ Zn
× Z. If π = ei for some i ∈ [n], we refer

to (π, π0) as an elementary disjunction and to the obtained cuts as
elementary split cuts.

Because Kπ,π0 ⊇ conv(K ∩ (Zn
× Rp+m+1)), split cuts are valid

inequalities for K ∩ (Zn
× Rp+m+1). For MILP, where K is a rational

polyhedron, Kπ,π0 is also a polyhedron and we only need linear
split cuts. In contrast, if K is a general closed convex set, Kπ,π0

is only closed and convex [14]. However, for special classes of K ,
we can characterize the nonlinear split cuts that need to be added
to K to obtain Kπ,π0 [1,4,5,14,19,21]. For instance, the following
proposition from [21] characterizes split cuts for conic quadratic
sets of the form

C :=

(x, t0) ∈ Rn+1

: ∥B (x − c)∥2 ≤ t0

, (1)

where C is in fact an affine transformation of the Quadratic cone
{(x, t0) ∈ Rn+1

: ∥x∥2 ≤ t0}.

Proposition 1. Let B ∈ Rn×n be an invertible matrix, c ∈ Rn,
(π, π0) ∈ Zn

× Z, and C be as defined in (1). If π T c ∉ (π0, π0 + 1),
then Cπ,π0 = C. Otherwise, there exist B̄ ∈ Rn×n and c̄ ∈ Rn such
that

Cπ,π0 =

(x, t0) ∈ C :

B̄ (x − c) + c̄

2 ≤ t0


.

Proposition 1 shows that the single split cut for C is ∥B̄ (x − c)+
c̄ ∥2 ≤ t0 which is of the same class as the inequality describing C .
However, this inequality can be too expensive computationally and
it can be preferable to add linear cuts instead. One way to achieve
this is to add a finite number of linearizations of the nonlinear cuts.
Such linearizations can be algorithmically obtained even in the ab-
sence of nonlinear cut formulas. Two examples of this are the al-
gorithms introduced in [9,18] to generate disjunctive inequalities
for convex MINLPs.

A completely different linearization scheme was introduced by
Atamtürk and Narayanan [2] for the general conic quadratic set
given by

M+ :=

(x, y, t0) ∈ Rn+p+1

: ∥Ax + Gy − b∥2

≤ t0, x ≥ 0, y ≥ 0} ,

for rational matrices and vectors A ∈ Qm×n, G ∈ Qm×p, and b ∈

Qm. Instead of considering valid inequalities for conv(M+ ∩ (Zn
×

Rp+1)) directly, using auxiliary variables t ∈ Rm, they first intro-
duce the nonlinear extended formulation ofM+ given by

|Ax + Gy − b| ≤ t, x ≥ 0, y ≥ 0, ∥t∥2 ≤ t0, (2)

so that, if P+ := {(x, y, t) ∈ Rn+p+m
: |Ax + Gy − b| ≤ t, x ≥ 0,

y ≥ 0} and Proj(x,y,t0) is the projection onto the (x, y, t0) space, then

M+ = Proj(x,y,t0)


(x, y, t, t0) ∈ Rn+p+m+1
: ∥t∥2

≤ t0, (x, y, t) ∈ P+

 
.

They then exploit the fact that P+ is a polyhedron to generate a
class of valid inequalities they denote the Conic MIR (CMIR). The
first version of the CMIR is a simple but strong cut for a four variable
and one constraint version of P+.

Proposition 2 (Simple CMIR). Let b0 ∈ R, f = b0 − ⌊b0⌋,

S0 :=

(x, y, t0) ∈ R4

: |x + y1 − y2 − b0| ≤ t0, y1, y2 ≥ 0

,

and let the simple CMIR be the inequality given by

(1 − 2f )(x − ⌊b0⌋) + f ≤ t0 + y1 + y2. (3)

The simple CMIR is valid for conv(S0 ∩ (Z × R2
+

× R+)) and
furthermore

conv(S0 ∩ (Z × R2
+

× R+)) = {(x, y, t0) ∈ S0 : (3)} .

The simple CMIR is a linear inequality, but Atamtürk and
Narayanan show that it can induce nonlinear inequalities in the
(x, t0) space through (2).

Lemma 1 (Nonlinear CMIR). Let T0 :=

(x, y, t0) ∈ R3

:
(x − b1)2 + y2 ≤ t0


, P0 :=


(x, y, t) ∈ R4

: |x − b1| ≤ t1, |y| ≤

t2

, b1 ∈ R, and f = b1−⌊b1⌋. Then the simple CMIR for |x−b1| ≤ t1

is given by

(1 − 2f )(x − ⌊b1⌋) + f ≤ t1, (4)

conv(T0 ∩ (Z × R2)) = T e1,⌊b1⌋
0 , and

T e1,⌊b1⌋
0

=


(x, y, t0) ∈ T0 :


((1 − 2f )(x − ⌊b1⌋) + f )2 + y2 ≤ t0


= Proj(x,y,t0)


(x, y, t, t0) ∈ R5

: (x, y, t) ∈ P0,

∥t∥2 ≤ t0, (4)
 

.

Atamtürk and Narayanan follow the traditional linear MIR
procedure [23,24] to get CMIRs for M+ and develop a super-
additive version of the CMIR. Their most general version results in
the following family of cuts.

Theorem 1 (Super-Additive CMIR). Let a, v ∈ Rn, g, w ∈ Rp, h, u
∈ Rm, S+ :=


(x, y, t) ∈ Rn+p+m

:
aT x + gTy + hT t − b0

 ≤

uT t + vT x+wTy, x, y, t ≥ 0

be a relaxation of P+ and let ϕf (a) =

−a + 2(1 − f )

⌊a⌋ +

(a−⌊a⌋−f )+

1−f


. Then for any α ≠ 0 and fα =

b0/α − ⌊b0/α⌋, a valid cut for S+ and P+ is
n

j=1

ϕfα (aj/α)xj − ϕfα (b0/α)

≤

(u + |h|)T t + (w + |g|)T y + vT x


/|α|. (5)

We let a super-additive CMIR be any cut of this form obtained
for some relaxation S+, which can be constructed through various
aggregation procedures. Finally, with regard to its relation to
the traditional linear MIR, Atamtürk and Narayanan use the
aggregation to show that everyMIR is a CMIR. In Section 3we show
that these two cuts are in fact equivalent.

3. Conic MIR and linear split cuts

We now show that CMIRs are equivalent to linear split cuts for
P+, which are in turn equivalent to traditional linear MIRs for P+.
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