Totally unimodular multistage stochastic programs

CrossMark

Ruichen (Richard) Sun ${ }^{\text {a }}$, Oleg V. Shylo ${ }^{\text {b }}$, Andrew J. Schaefer ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
${ }^{\mathrm{b}}$ Department of Industrial \& Systems Engineering, University of Tennessee, Knoxville, TN 37996-2315, United States

A R T I CLE INFO

Article history:

Received 20 August 2014
Received in revised form
29 October 2014
Accepted 3 November 2014
Available online 11 November 2014

Keywords:

Stochastic mixed integer programming
Total unimodularity
Multistage optimization

Abstract

We consider totally unimodular multistage stochastic programs, that is, multistage stochastic programs whose extensive-form constraint matrices are totally unimodular. We establish several sufficient conditions and identify examples that have arisen in the literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider a class of multistage stochastic programs (MSP) whose extensive-form constraint matrices are totally unimodular (TU). TU matrices have been well studied in deterministic mixed integer programming and combinatorial optimization. When the constraint matrix of a mixed integer program (MIP) is TU and the right-hand side is integral, the polyhedron described by the linear relaxation of the MIP is integral [7].

Kong et al. [10] provided several sufficient conditions for twostage totally unimodular stochastic programs. These conditions used a generalization of TU matrices that we revisit in Section 2. This paper can be viewed as a multistage generalization of Kong et al. [10]. Romeijnders et al. [12] studied two-stage stochastic mixed integer programs in which the only uncertainty is on the right-hand side. They established that if the probability distribution over the right-hand side is independent and uniform and the recourse matrices are totally unimodular, a certain approximation of the integer recourse function is precisely its convex hull. Huang [8] reformulated the stochastic single item, uncapacitated dynamic lot-sizing problem without setup costs and proved that the reformulation is totally unimodular. We revisit the problem and show that the total unimodularity of Huang's [8] original formulation follows from the characterizations in Section 3.

[^0]
2. Preliminaries

Consider a multistage stochastic mixed-integer program with recourse. For notational convenience and without loss of generality, we assume that the number of continuous decision variables, l, the number of integer decision variables, $n-l$, and the number of constraints, m, are the same in every stage by introducing zero row and column vectors if necessary. The deterministic equivalent program (DEP) of an MSP is

$$
\begin{align*}
(D E P) \quad \min c^{1^{\top}} x^{1} & +\mathbb{Q}^{2}\left(x^{1}\right) \tag{1a}\\
\text { s.t. } W^{1} x^{1} & \geq h^{1}, \tag{1b}\\
x^{1} & \in \mathbb{R}_{+}^{l} \times \mathbb{Z}_{+}^{n-l},
\end{align*}
$$

where $Q^{2}\left(x^{1}\right)=\mathbb{E}_{\xi^{2}(\omega)}\left[Q^{2}\left(x^{1}, \xi^{2}(\omega)\right)\right]$, and $Q^{\tau}\left(x^{\tau-1}, \xi^{[\tau-1]}(\omega)\right)$ $=\mathbb{E}_{\xi^{\tau}(\omega) \mid \xi^{[\tau-1]}(\omega)}\left[Q^{\tau}\left(x^{\tau-1}, \xi^{[\tau]}(\omega)\right)\right]$ for $2<\tau \leq H$, with $Q^{\tau^{\prime}}\left(x^{\tau^{\prime}-1}, \xi^{\left[\tau^{\prime}\right]}(\omega)\right)=\min \left\{c^{\tau^{\prime}}(\omega)^{\top} x^{\tau^{\prime}}(\omega)\right.$

$$
+Q^{\tau^{\prime}+1}\left(x^{\tau^{\prime}}, \xi^{\left[\tau^{\prime}\right]}(\omega)\right): W^{\tau^{\prime}}(\omega) x^{\tau^{\prime}}(\omega) \geq h^{\tau^{\prime}}(\omega)
$$

$$
\left.-T^{\tau^{\prime}-1}(\omega) x^{\tau^{\prime}-1}, x^{\tau^{\prime}}(\omega) \in \mathbb{R}_{+}^{l} \times \mathbb{Z}_{+}^{n-l}\right\} \quad \text { for } 2 \leq \tau^{\prime} \leq H-1,
$$

and

$$
\begin{aligned}
& Q^{H}\left(x^{H-1}, \xi^{[H]}(\omega)\right)=\min \left\{c^{H}(\omega)^{\top} x^{H}(\omega): W^{H}(\omega) x^{H}(\omega) \geq h^{H}(\omega)\right. \\
& \left.\quad-T^{H-1}(\omega) x^{H-1}, x^{H}(\omega) \in \mathbb{R}_{+}^{l} \times \mathbb{Z}_{+}^{n-l}\right\} .
\end{aligned}
$$

The vectors $c^{1} \in \mathbb{R}^{n}, h^{1} \in \mathbb{R}^{m}$, and the matrix $W^{1} \in \mathbb{R}^{m \times n}$ are known. For each $\tau=2, \ldots, H$ and for all $\omega, W^{\tau}(\omega)$ is an $m \times n$ matrix, and $T^{\tau-1}(\omega)$ is an $m \times n$ matrix. $\xi^{\tau}(\omega)^{\top}$

Fig. 1. A scenario tree and a schematic of the corresponding extensive-form constraint matrix.
$=\left[c^{\tau}(\omega)^{\top}, h^{\tau}(\omega)^{\top}, T_{1, \bullet}^{\tau-1}(\omega), \ldots, T_{m, \bullet}^{\tau-1}(\omega), W_{1, \bullet}^{\tau}(\omega), \ldots, W_{m, \bullet}^{\tau}\right.$
$(\omega)]$ is a random $(n+m+2 m n)$-vector, and $\xi^{[\tau]}(\omega)=\left(\xi^{2}(\omega)\right.$, $\left.\ldots, \xi^{\tau}(\omega)\right)$.

In the following discussion, we assume that $\xi=\left(\xi^{2}, \ldots, \xi^{H}\right)$ follows a discrete distribution with a finite support Ξ with $|\Xi|=K$. The justification of this assumption was provided by Schultz [14], while a more thorough treatment of multistage stochastic integer programs can be found in Römisch and Schultz [13]. We call $\xi_{i}=\left(\xi_{i}^{2}, \ldots, \xi_{i}^{H}\right) \in \Xi$ the scenario indexed by $i \in \mathbb{S}=\{1, \ldots, K\}$. Each path from the root node to a leaf node at level H in the scenario tree corresponds to one scenario $i \in \mathbb{S}$. An example of a scenario tree is illustrated in Fig. 1(a).

For a scenario tree $\mathcal{T}=\{\mathcal{N}, \mathcal{A}\}$, let Node 1 be the root node, and \mathcal{N}_{τ} be the set of nodes on level $1 \leq \tau \leq H$, so $\mathcal{N}_{1}=\{1\}$. Let $\alpha(k) \in \mathcal{N}$ be the immediate ancestor (or parent) of a non-root node $k \in \mathcal{N} \backslash\{1\}, \Phi(k) \subseteq \mathcal{N}$ be the set of immediate children of a node $k \in \mathcal{N}$, and $\rho(k)=\tau$ if $k \in \mathcal{N}_{\tau}$. Note that $\Phi(k)=\emptyset$ if $\rho(k)=H$. Then the extensive form of $(D E P)$ (also called the arborescent form by Dupačová et al. [3]) based on the scenario tree is given by:
$\min \sum_{k \in \mathcal{N}} p_{k} c_{k}^{\top} x_{k}$
s.t. $\quad W^{1} x_{1} \geq h^{1}$,
$T^{k} \chi_{\alpha(k)}+W^{k} x_{k} \geq h^{k}, \quad \forall k \in \mathcal{N} \backslash \mathcal{N}_{1}$,
$x_{k} \in \mathbb{R}_{+}^{l} \times \mathbb{Z}_{+}^{n-l}, \quad \forall k \in \mathcal{N}$.

A schematic of the extensive-form constraint matrix corresponding to the MSP with the scenario tree in Fig. 1(a) is shown in Fig. 1(b). Let Λ denote the extensive-form constraint matrix, and Λ_{τ} denote the submatrix of Λ up to stage τ as illustrated in Fig. 1(b). Note that $\Lambda=\Lambda_{H}$. For every $k \in \mathcal{N}$, let A^{k} denote the submatrix of Λ formed only by W^{k} and $T^{k^{\prime}}$ for all $k^{\prime} \in \Phi(k)$. In particular, we have $A^{k}=W^{k}$ if $k \in \mathcal{N}_{H}$. We are interested in sufficient conditions for the extensive-form constraint matrix of an MSP to be TU. When the right-hand sides are integral, such stochastic programs may be solved as multistage stochastic linear programs, even if there are integrality restrictions.

Definition 1. An $m \times n$ matrix A is totally unimodular (TU) if and only if every square submatrix of A has determinant in $\{0, \pm 1\}$.

Theorem 1 (Hoffman and Kruskal[7]). An integral matrix A is totally unimodular if and only if the polyhedron defined by $\{x: A x \leq b, x \geq$ $0\}$ is integral for all integral b for which it is nonempty, i.e., the extreme points of the polyhedron are integral.

Theorem 2 (Ghouila-Houri [6]). A $m \times n$ matrix A is TU if and only if for any column subset $J \subseteq\{1, \ldots, n\}$, there exists a partition $\left(J^{1}, J^{2}\right)$ of J such that

$$
\begin{equation*}
\sum_{j \in J^{1}} a_{i j}-\sum_{j \in J^{2}} a_{i j} \in\{0, \pm 1\} \quad \text { for } i=1, \ldots, m \tag{3}
\end{equation*}
$$

Definition 2 (Kong et al. [10]). Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{T}\right\}$ be a set of $m \times n$ matrices, and let $v \in\{0, \pm 1\}^{m}$. The set \mathcal{A} is $T U$ with respect to v, denoted by $T U(v)$, if for any column subset $J \subseteq\{1, \ldots, n\}$, there exist partitions $\left(J_{t}^{1}, J_{t}^{2}\right), 1 \leq t \leq T$, such that for $i=1, \ldots, m$,

$$
\begin{align*}
& \sum_{j \in J_{t}^{1}} a_{i j}^{t}-\sum_{j \in J_{t}^{2}} a_{i j}^{t} \in\{0,1\}, \quad t=1, \ldots, T, \text { if } v_{i}=-1 \tag{4}\\
& \sum_{j \in J_{t}^{1}} a_{i j}^{t}-\sum_{j \in J_{t}^{2}} a_{i j}^{t} \in\{0, \pm 1\}, \quad t=1, \ldots, T, \text { if } v_{i}=0 \tag{5}
\end{align*}
$$

and
$\sum_{j \in J_{t}^{1}} a_{i j}^{t}-\sum_{j \in J_{t}^{2}} a_{i j}^{t} \in\{0,-1\}, \quad t=1, \ldots, T$, if $v_{i}=1$.

3. Characterizations of total unimodular multistage stochastic programs

Applying Theorem 2 to (2) yields the following:
Proposition 1. Let J be a subset of the columns of the extensive-form constraint matrix of an MSP, and for each $k \in \mathcal{N}$, let J_{k} be the set of the columns in J corresponding to A^{k} in Λ so that $J=\left\{J_{k}\right\}_{k \in \mathcal{N}}$. Then the MSP is TU if and only if for any J, there exists a partition $\left(J^{1}, J^{2}\right):=\left(\left\{J_{k}^{1}\right\}_{k \in \mathcal{N}},\left\{J_{k}^{2}\right\}_{k \in \mathcal{N}}\right)$ such that for $i=1, \ldots, m$,
$\left|\sum_{j \in J_{1}^{1}} w_{i j}^{1}-\sum_{j \in J_{1}^{2}} w_{i j}^{1}\right| \leq 1$,

https://daneshyari.com/en/article/1142291

Download Persian Version:
https://daneshyari.com/article/1142291

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: schaefer@pitt.edu (A.J. Schaefer).

