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a b s t r a c t

Motivated by heavy traffic approximations for single server queueswith abandonment, we provide an ex-
act expression for the moments of the truncated normal distribution using Stein’s lemma. Consequently,
our moment expressions provide insight into the steady state skewness and kurtosis dynamics of sin-
gle server queues with impatient customers. Moreover, based on the truncated normal distribution, we
develop a new approximation for single server queues with abandonment in the nonstationary setting.
Numerical examples illustrate that our approximation performs quite well.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The truncated normal distribution is a very important distribu-
tion in theworld of probability and statistics. It appears quite natu-
rally when the normal distribution itself arises. For example, when
one wants to threshold or screen values from a dataset that is nor-
mally distributed, the remaining data has a truncated normal dis-
tribution. Therefore to analyze themoments of the remaining data,
one needs to study the moments of the truncated normal distribu-
tion.

Most if not all of the available literature tends to focus on the
mean and variance of the truncated normal distribution. This is
partially motivated from the statistical community since they are
interested in obtaining unbiasedmean and variance estimators for
data that is screened or thresholded. See for example [1–3,5]. In
this paper, we not only provide exact expressions for the skewness
and kurtosis, but also provide anymoment of the truncated normal
distribution. Later in the paper, we also use the truncated normal
distribution to approximate the nonstationary single server queue
with abandonment.

Although there is substantial motivation to study the moments
of the truncated normal distribution from a statistical perspective,
we are primarily motivated by developing approximations for the
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cumulantmoments of queueswith impatient customers. There is a
large and growing literature on queues with impatient customers,
for instance, [21,22] show that the truncated normal distribution
arises as the heavy traffic diffusion limit for the stationary single
server queuewith impatient customers. More recently, [6] showed
that the truncated normal distribution is the heavy traffic limit of
ticket queues where customers are unobservable. In [22] they con-
sider a GI/GI/1 + GI queueing model with abandonment. They as-
sume that the server works at rate one under the FIFO discipline.
The primitives of the model include three independent sequences
of non-negative i.i.d. random variables for the inter arrival times,
service times, and abandonment times. We assume that the ser-
vice times have mean 1

µ
and coefficient of variation σs. The inter

arrival times have mean 1
λ

=
1

µ+β·
√
µ
and coefficient of variation

σa where β is the heavy traffic parameter. Lastly, we assume that
the abandonment can have any distribution where the derivative
of cdf evaluated at zero is strictly positive with value θ . The main
theorem proved in [22] says the following:

Theorem 1.1 ([22]). If

Q̃ n(0) ⇒ Q̃0, as n → ∞,

then we have the following convergence for the queue length process
and generalized linear regulator mapping (Q̃ n, Ỹ n) as described in
Eq. 3.3 in [22]

(Q̃ n, Ỹ n) ⇒ (Q̃ , Ỹ ), as n → ∞,
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where Q̃ (0) is equal in distribution to Q̃0 and together Q̃ and Ỹ obey
the following stochastic differential equation:

dQ̃ (t) = (−β + θ · Q̃ (t))dt + σ · dB(t)+ dỸ (t)

where β is the scaled heavy traffic scaling parameter, θ is the deriva-
tive of the abandonment distribution at zero, and σ 2

= σ 2
a +σ 2

s is the
sum of the arrival and service distributions coefficient of variation.

The process Q̃ (t) is known as a regulated Ornstein–Uhlenbeck
(ROU) process and the steady state distribution of Q̃ (t) is a trun-
cated normal random variable that is conditioned or regulated to
be in the interval (0,∞)

Q̃ (∞) = Normal

β

θ
,
σ 2

2θ
, 0,∞


. (1.1)

In the work of [6,22], they only analyze the steady state mean
dynamics. However, it is important to analyze higher cumulants
such as the variance, skewness, and kurtosis as they provide es-
sential insights into the behavior of the queueing process. Since the
Gaussian is defined to have zero skewness and zero excess kurtosis,
when the skewness and kurtosis are far from zero, it implies that
a Gaussian approximation of the dynamics might not be appropri-
ate. In fact, the work of [9–11,15–19] shows that the skewness and
kurtosis can play a significant role in estimating queueing perfor-
mance. Thus, we believe that our exact expressions for the higher
cumulants of the truncated normal will give us insight into the dy-
namics of queues with impatient customers.

2. Stein’s lemma and main results

2.1. Stein’s lemma

In this section, we give a brief overview of Hermite polynomials
and Stein’s lemma [20], which are important ingredients for deriv-
ing our exact expressions for themoments of the truncated normal
distribution. The probabilistic Hermite polynomials as described
in [14] are defined as:

hn(x) =
1
ϕ(x)

·


−

d
dx

n

ϕ(x).

The first four Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1,
h3(x) = x3 − 3x,

and in general they solve the recurrence relation

hn+1(x) = x · hn(x)− n · hn−1(x).

We have the following Hermite polynomial generalization of
Stein’s lemma; however, for the remainder of the paper, the ran-
dom variable X is a standard Gaussian random variable.

Lemma 2.1. If X is a standard Gaussian random variable and
E[f (n)(X)] < ∞, then

E [f (X) · hn(X)] = E[f (n)(X)]

where f is any generalized function and f (n) is the nth derivative of the
function f .

For example, since {X ≥ χ} is a generalized function, Stein’s
lemma can be used to obtain

E [X · {X ≥ χ}] = E

δχ (X)


= ϕ(χ),

or for n ≥ 1

E [hn(X) · {X ≥ χ}] = E

hn−1(X) · δχ (X)


= hn−1(χ) · ϕ(χ),

where we define ϕ and Φ to be the density and the cumulative
distribution functions, respectively, for X ∼ Normal(0, 1), i.e.,

ϕ(x) ≡
1

√
2π

e−x2/2, Φ(x) ≡

 x

−∞

ϕ(y) dy,

and letΦ(x) ≡


∞

x
ϕ(y) dy.

In addition to the derivative properties of the Hermite poly-
nomials, it is well known from [4] that the probabilistic Hermite
polynomials have the following explicit form in terms of standard
polynomials,

hn(x) = n! ·
⌊n/2⌋
m=0

(−1)m

m! · (n − 2m)!
·
xn−2m

2m
. (2.2)

However, the above relation of Eq. (2.2) can be inverted to
represent any polynomial in terms of the Hermite polynomials as
the next theorem shows.

Theorem 2.2. Any polynomial has the following decomposition rep-
resentation in terms of the probabilist Hermite polynomials

Xn
= n! ·

⌊n/2⌋
m=0

2−m

m! · (n − 2m)!
· hn−2m(X).

Proof. This proof follows from induction and exploiting the Ro-
drigues recursion relation for Hermite polynomials. We also pro-
vide a proof of this result in an online appendix to this paper found
on the author’s website. �

This representation of any polynomial in terms of a sum of Her-
mite polynomials will be useful since any moment of a Gaussian
random variable can be computed by the last coefficient of the sum
since all Hermite polynomials where n ≥ 1 have expectation zero.
Nowwith our review of Hermite polynomials and their properties,
we give our main result.

Theorem 2.3. Suppose that Q has a normal distribution with mean q
and variance v; then the nth conditional moment has representation

E[Q n
|a ≤ Q ≤ b]

=

n
j=0

aj ·


⌊j/2⌋
m=0

bjm · (hn−2m−1(χ) · ϕ(χ)− hn−2m−1(ψ) · ϕ(ψ))


Φ(ψ)− Φ(χ)

where we define

aj =


n
j


·

√

vj · qn−j
· j! and bjm =

2−m

m! · (j − 2m)!
,

(h−1(χ) · ϕ(χ)− h−1(ψ) · ϕ(ψ)) = Φ(ψ)− Φ(χ),

and

χ =
a − q
√
v

and ψ =
b − q
√
v
.

Proof. We prove this result in an online appendix to this paper
found on the author’s website. �

As a result of the above expression, we have the following
corollary, which gives explicit expressions for the mean, variance,
skewness, and kurtosis of the truncated normal distribution.

Corollary 2.4. Eqs. (2.3), (2.4), Skew[Q |a ≤ Q ≤ b] and Kurt[Q |

a ≤ Q ≤ b] are given in Box I.
Proof. After some tedious calculations which we omit for brevity,
the proof follows from using Theorem 2.3 and understanding the
definitions of the variance, skewness, and kurtosis of random
variables. �
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