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a b s t r a c t

We apply entropy based ideas to portfolio optimization and options pricing. The known abstracted
problem corresponds to finding a probability measure that minimizes relative entropy with respect to a
specified measure while satisfying moment constraints on functions of underlying assets. We generalize
this to also allow constraints onmarginal distribution of functions of underlying assets. These are applied
to Markowitz portfolio framework to incorporate fatter tails as well as to options pricing to incorporate
implied risk neutral densities on liquid assets.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Entropy based ideas have found a number of popular appli-
cations in finance over the last two decades. A key application
involves portfolio optimization where we often have a prior prob-
ability model and some independent expert views on the assets
involved. If such views are of the form of constraints on moments,
entropy based methods are used (see, e.g., Meucci [17]) to arrive
at a ‘posterior’ probability measure that is closest in the sense of
minimizing relative entropy or I-divergence to the prior probabil-
ity model while satisfying those moment constraints. Another im-
portant application involves calibrating the risk neutral probability
measure used for pricing options (see, e.g., Buchen and Kelly [6],
Stutzer [21], Avellaneda et al. [2]). Here, entropy based ideas are
used to arrive at a probability measure that correctly prices given
liquid options (which are expectations of option payoffs) while
again being closest to a specified prior probability measure.

As indicated, in the existing literature the conditions imposed
on the posterior measure correspond to constraints on the mo-
ments of the underlying random variables. However, the con-
straints that arise in practice may be more general. For instance,
in portfolio optimization settings, an expert may have a view that
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a certain index of stocks has a fat-tailed t-distribution, and is look-
ing for a posterior joint distribution as amodel of stock returns that
satisfies this requirement while being closest to a priormodel, that
may, for instance, be based on historical data.

Similarly, a view on the risk neutral density of a certain financial
instrument would also be reasonable if it is heavily traded, e.g., fu-
tures contract on a market index, and such views on marginal
densities can be used to better price less liquid instruments that
are correlated with the heavily traded instrument. There is now
a sizable literature that focuses on estimating the implied risk
neutral density from the observed option prices of an asset that
has a highly liquid options market (see [15] for a comprehen-
sive review). In [12], Figlewski notes that the implied risk neutral
density of the US market portfolio, as a whole entity, implicitly
captures market’s expectations, investors’ risk preferences and
sensitivity to information releases and events. This is usually not
possiblewith just a finite number of constraints on expected values
of payoffs fromoptions. So in the options pricing scenario, views on
the posterior measure could include, for example, those on the im-
plied risk neutral density of a security price estimated from certain
heavily traded options written on that security. See, for example,
Avellaneda [1] for a discussion on the need to use all the available
econometric information and stylized market facts to accurately
calibrate mathematical models.

Motivated by these considerations, in this paper we devise a
methodology to arrive at a posterior probability measure when
the constraints on this measure are of a general nature that,
apart frommoment constraints, include specifications of marginal
distributions of functions of underlying random variables as well.
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Related literature: The evolving literature on updating models
for portfolio optimization to include specified views builds upon
the pioneering work of Black and Litterman [4]. They consider
variants of Markowitz’s model where the subjective views of
portfolio managers are used as constraints to update models of the
market using ideas from Bayesian analysis. Their work focuses on
Gaussian framework with views restricted to linear combinations
of expectations of returns from different securities. Since then a
number of variations and improvements have been suggested (see,
e.g., [18–20]). Earlier, Avellaneda et al. [2] used weighted Monte
Carlo methodology to calibrate asset pricing models to market
data (also see Glasserman and Yu [13]). Buchen and Kelly in [6]
and Stutzer in [21] use the entropy approach to calibrate one-
period asset pricing models by selecting a pricing measure that
correctly prices a set of benchmark instruments while minimizing
I-divergence fromaprior specifiedmodel, thatmay, for instance be
estimated from historical data (see the recent survey article [16]).
Our contributions: As mentioned earlier, we focus on examples
related to portfolio optimization and options pricing. It is well
known that for views expressed as a finite number of moment
constraints, the optimal solution to the I-divergence minimization
can be characterized as a probability measure obtained by suitably
exponentially twisting the original measure; this exponentially
twisted measure is known in the literature as the Gibbs measure
(see, for instance, [9]). We generalize this to allow cases where
the expert views may specify marginal probability distribution
of functions of random variables involved. We show that such
views, in addition to views on moments of functions of underlying
random variables can be easily incorporated. In particular, under
technical conditions, we characterize the optimal solution with
these general constraints, when the objective is I-divergence and
show the uniqueness of the resulting optimal probability measure.

As an illustration, we apply our results to portfolio modeling in
Markowitz framework where the returns from a finite number of
assets have a multivariate Gaussian distribution and expert view
is that a certain portfolio of returns is fat-tailed. We show that
in the resulting probability measure, under mild conditions, all
correlated assets are similarly fat-tailed. Hence, this becomes a
reasonable way to incorporate realistic tail behavior in a portfolio
of assets. Generally speaking, the proposed approachmay be useful
in better risk management by building conservative tail views in
mathematical models. We also apply our results to price an option
which is less liquid and written on a security that is correlated
with another heavily traded asset whose risk neutral density is
inferred from the options market prices. We conduct numerical
experiments on practical examples that validate the proposed
methodology.

Organization of the paper: We formulate the model selection
problem as an optimization problem in Section 2, and derive the
posterior probabilitymodel as its solution in Section 3. In Section 4,
we apply our results to the portfolio problem in the Markowitz
framework anddevelop explicit expressions for the posterior prob-
ability measure. There we also show how a view that a portfolio of
assets has a ‘regularly varying’ fat-tailed distribution renders a sim-
ilar fat-tailed marginal distribution to all assets correlated to this
portfolio. Further, we numerically test our proposed algorithms on
practical examples. In Section 5, we illustrate the applicability of
the proposed framework in options pricing scenario. All the proofs
are presented in [10].

2. The model selection problem

Let the random vectors X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn)
denote the risk factors associatedwith a prior reference riskmodel
which is specified as a joint probability density f (x, y) overX andY.
This model, typically arrived using statistical analysis of historical

data, is used for risk analysis (such as calculating expected shortfall,
and VaR) or for choosing optimal positions in portfolios. However,
the market presents itself with additional information, usually in
the form of ‘views’ of experts (or) current market observables.
These views can be simple moment constraints as in,
x,y

hi(x, y)P(dx, dy) = ci, i = 1, . . . , k,

(or) as detailed as constraints over marginal densities:
y

P(dx, dy) = g(x) for all x,

where ci, i = 1, . . . , k are constants, g(·) is a given marginal den-
sity of X and P(·) is the unknown probability measure govern-
ing the risk factors. Let P (f ) denote the collection of probability
density functions which are absolutely continuous with respect to
the density f (·, ·) (a density f̃ (·, ·) is said to be absolutely contin-
uous with respect to f (·, ·) if for almost every x and y such that
f (x, y) = 0, f̃ (x, y) also equals 0). For any probability density
f̃ (x, y), the relative entropy of f̃ with respect to f (also known as
I-divergence or Kullback–Leibler divergence) is defined as

D(f̃ ∥f ) :=




log


f̃ (x, y)
f (x, y)


f̃ (x, y)dxdy, if f̃ ∈ P (f )

∞, otherwise.

Though relative entropy D(·∥·) is not a metric, it has been widely
used to discriminate between probability measures in the context
of model calibration (see [7,6,21,3,1,2,17,16]). Our objective in this
paper is to identify a probability model that has minimum rela-
tive entropy with respect to the prior model f (·, ·) while agreeing
with the views on moments of Y and marginal distribution of X.
Formally, the optimization problem O1 we attempt to solve is:

min
f̃∈P (f )


log


f̃ (x, y)
f (x, y)


f̃ (x, y)dxdy

subject to:
y
f̃ (x, y)dy = g(x) for all x, and (1a)

x,y
hi(x, y)f̃ (x, y)dxdy = ci, i = 1, 2, . . . , k. (1b)

3. Solution to the optimization problem O1

Some notation is needed to proceed further. For any λ =

(λ1, λ2, . . . , λk) ∈ Rk, let

fλ(y|x) :=

exp


k
i=1

λihi(x, y)

f (y|x)


y exp


k

i=1
λihi(x, y)


f (y|x)dy

=

exp


k
i=1

λihi(x, y)

f (x, y)


y exp


k

i=1
λihi(x, y)


f (x, y)dy

whenever the denominator exists. Further, let fλ(x, y) := fλ(y|x)×
g(x) denote a joint density function of (X, Y) and Eλ[·] denote the
expectation under fλ(·, ·). Letmg(·) be the measure corresponding
to the probability density g(·) onRm. For amathematical claim that
depends on x ∈ Rm, say S(x), we write S(x) for almost all x, with
respect to g(x)dx to mean thatmg({x : S(x) is false}) = 0.
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