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a b s t r a c t

Wedevelop networkmodels to represent the dynamics of a virus spreading in a contact network. Based on
the resulting dynamics governing the spread, we present optimization models to rapidly detect the virus.
We consider two goals, maximizing the probability of detecting a virus by a time threshold and minimiz-
ing the expected time to detection. We establish submodularity results for these objective functions and,
using data from a mobile service provider, we show that a greedy heuristic performs surprisingly well.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We examine the problem of detecting a virus that spreads
throughout a contact network in a stochastic manner. In the
basic model we have an undirected graph representing a contact
network (e.g., a group of friends on Facebook, or a cell phone
network). At time 0, a virus begins at some node of the network
and spreads in a manner that may be stochastic. Before time 0, the
system manager can install a limited number of detectors at some
subset of the nodes in the graph. Themanager’s goal is somemetric
related to rapid detection of the virus. The two goals we consider
are to: (i) maximize the probability of detection before some fixed
time t0 and (ii) minimize the expected time until detection. At
its root, this is a combinatorial stochastic optimization problem,
which is difficult to attack directly. In this paper, we present
a general class of models, obtain submodularity results, and
investigate the efficiency of greedy heuristics using real data.

This model was motivated by our work with SK-Telecom (SKT),
one of the largest mobile service providers in South Korea. In
that work we examined a contact network arising from calls or
texts between cell phone users. The threats in such a network are
MMS viruses that may spread stochastically by, for example, pick-
ing random contacts from a user’s address book. Messages can be
scanned at MMS gateways for suspicious signatures. However, a
well-written virus may evade detection at gateways. We focus on
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detecting viruses by monitoring cell phones for anomalous behav-
ior, much in the same way a system administrator monitors com-
puters. However, monitoring requires bandwidth, and so we are
limited in the number of phones we can monitor. We use SKT data
in the computational results we describe in Section 5. More exten-
sive motivation and computational work can be found in [9,10].
Our model has potential application to any type of contact net-
work subject to unwanted invasions, which move randomly – as
opposed to adversarially – on that network.

There is related work in the literature. Berman et al. [2] and
Gutfraind et al. [4] consider the spreadmodel that we call TN1*C in
the next section. While their applications differ from ours, in our
terminology they install detectors to maximize the probability of
detecting the virus before the virus reaches a ‘‘bad’’ node, and they
establish a submodularity result for that objective function. Krause
et al. [8] install sensors in a municipal water system to detect the
malicious introduction of contaminants. They consider criteria in-
cluding the expected time todetect the contaminants, the expected
population affected by the contaminants, the expected amount of
contaminated water consumed prior to detection, and the proba-
bility of detecting the contaminants. They formulate optimization
models based on maximizing the reduction in a penalty function,
and establish a submodularity result for this penalty-reduction
metric. Kempe et al. [6] consider the problem of maximizing influ-
ence in a social network. Here, information is inserted at selected
nodes in a social network after which the information diffuses
across that network. The goal is to select the nodes of insertion to
maximize influence. Kempe et al. establish submodularity proper-
ties for influence functions under a class of diffusion models.
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Table 1
Nomenclature for models of virus spread.

Characteristics Models

Replication Virus transits from node to node (T ),
Virus replicates itself and sends copies (R).

Persistence Only newly infected nodes distribute the virus (N),
All infected nodes distribute the virus (A).

Propagation Virus propagates to one randomly selected neighbor (1),
Virus propagates to every neighbor (E).

Susceptibility Nodes are susceptible with probability one (1),
Nodes are susceptible with probability p < 1 (P).

Transmission
time

Transmission in constant unit time steps (C),
Transmission according to an exponential distribution (M),
Transmission according to a general distribution (G).

2. Modeling

2.1. The stochastic virus model

Wedefine a contact network to be a graphG = (V , E) on a set V
of nodes and a set E of undirected edges, where |V | and |E| denote
the number of nodes and edges, respectively. We call two nodes
neighbors if an edge connects them. We assume a known probabil-
ity distribution governs the single initial node from which a virus
begins to spread at time 0, and we let wi, i ∈ V , denote that prob-
ability mass function.

We describe now a framework for organizing the assumptions
of the manner in which the virus spreads on the network starting
at time 0. The model classification is organized by considering the
following questions:

• How does the virus disseminate through the network?
• How long are the nodes ‘‘contagious’’?
• How does the virus select nodes for replication?
• How susceptible are nodes to the virus?
• What model of time dynamics represents virus transmission?

We label the model characteristics implied by answers to these
questions as follows: replication, persistence, propagation, sus-
ceptibility, and transmission time. Varying these characteristics
generates a diverse array of spread models, some of which have
appeared in the literature. Table 1 summarizes the corresponding
set of models.

Replication. A virus may either simply transit (T) the network
without creating copies or replicate (R) itself by sending copies
throughout the network. The former mode is unusual for viral
models, but we include it because it is related to other models ap-
pearing in the literature.

Persistence. A virus may only attempt to infect other nodes
one time or it may persistently attempt to infect other nodes. In
discrete-time models this corresponds to only newly (N) infected
nodes spreading the virus, or all (A) infected nodes spreading the
virus.

Propagation. An infected node may attempt to propagate by
choosing one randomly selected neighboring node (1) or it may at-
tempt infection of every (E) neighboring node. Other variations can
be taken into account via the next characteristic.

Susceptibility. Potential transmission of the virus to a node may
not succeed. Some nodes may be deemed immune, due to biologi-
cal reasons, or technical reasons, depending on the application. So,
we distinguish the case in which every node that receives a virus
becomes infected (1) from the case in which each attempted infec-
tion succeeds independently with probability p (P).

Transmission time. The transmission time indicates how much
time passes before an infected node takes action to infect another

node, or nodes. Under constant transmission times (C), we have a
discrete-time model. Under exponential (M) transmission times,
the model is a continuous-time Markov chain. Generally dis-
tributed (G) transmission times, inmost cases, require amore com-
plex stochastic model (such as a semi-Markov process).

To denote a specific spreadmodel, we use a string of five letters
and numbers. For example, RNE1C represents the spread model in
which the virus replicates and sends copies from newly infected
nodes to all neighbors, with probability one, in discrete time. Our
computational results focus on discrete-timemodels. However, we
present this framework for two reasons: (i) some of our theoreti-
cal results hold for the entire set of models, and (ii) some model
variations relate to models in the literature. Wemake a few obser-
vations below on various model classes.

First, consider models whose designation begins with T. In such
models, the virus hops from one node to another. In particular, the
virus exists only at one node at a time. In this mode of replication,
the sets of designations TA*** and T*E** (here * is a wildcard) do
not make sense. So, we can restrict attention to the models in the
class TN1**. The models TN11C and TN1PC can be represented by
discrete-time Markov chains (DTMCs) with a state space of size
|V |. In the former model, the virus hops from node to node by
randomly selecting a neighboring node. The latter model could
be interpreted similarly, but with the additional possibility that
the virus can remain at the same node at subsequent time steps.
The models TN11M and TN1PM are just continuous-time analogs
of the first two models mentioned and can thus be represented
by continuous-time Markov chains (CTMCs). Finally, the related
models TN11G and TN1PG can be represented by semi-Markov
processes.

Now, consider spreadmodels whose designation begins with R.
The distinction between the classes RN*** and RA*** involves
whether the infected nodes persist in attempting infection. Fur-
thermore, we have equivalence between the classes RAE1* and
RNE1*, since the set of infected nodes is the same in either class.
The spreadmodel RAE1C is a special case inwhich an infected node
replicates and sends copies to every neighboring node in discrete
time, and this is the only model under consideration with com-
pletely deterministic dynamics. That said, even with a determinis-
tic model of spread, the model has stochastic elements in that we
allow the initial location of the virus to be random.

Finally, consider spread models in which transmission occurs
in constant unit time steps, C. Each of our models of virus spread
with constant-time transmission is a time-homogeneous DTMC
with a state space of size at most 2|V |, because the state is given
by the current set of infected nodes. If transmission times are in-
stead exponentially distributed then each of our models is time-
homogeneous CTMC with a finite state space.

2.2. Metrics and optimization

For purposes of exposition, we focus on two metrics to capture
the goal of rapidly detecting a virus. Othermetrics representing, for
example, more complex risk attitudes, could be of interest also. For
each metric, some fixed set of nodes, S ⊆ V , called detectors must
be chosen in advance, and we detect the virus when it first infects
a node in S. Thus, any realization of the virus propagation process
yields a detection time.We assume that the detectors are perfectly
reliable (i.e., the virus is always detectedwhen it infects a detector),
although it is straightforward to incorporate false negatives.

In the optimization model under our first metric, we choose S
to maximize the probability of detecting the virus by a given time
threshold (MPT). In our second optimizationmodel, we choose S to
minimize the expected time to detection (MET). In each case, the
requisite probability distribution governing propagation derives
from the probability mass function governing the initial location
of the virus and the model of spread that we assume.
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