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An all-different constraint on some discrete variables imposes the condition that no two variables take
the same value. A linear-inequality description of the convex hull of solutions to a system of all-different
constraints is known under the so-called inclusion property: the convex hull is the intersection of the
convex hulls of each of the all-different constraints of the system. We give a short proof of this result,
which in addition shows the total dual integrality of the linear system.
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1. Introduction

In many combinatorial optimization problems one needs to im-
pose one or more all-different constraints, i.e., conditions of the fol-
lowing type: for a given finite (sub)family of discrete variables,
no two variables can be assigned the same value. All-different
constraints arise, for instance, in problems related to timetabling,
scheduling, manufacturing, and in several variants of the assign-
ment problem (see, e.g., [6,9] and the references therein).

Though all-different constraints are mainly studied in the
context of Constraint Programming (see, e.g., [8]), when dealing
with a problem that can be modeled as an integer linear program
it is useful to have information on the polyhedral structure of the
feasible solutions to a system of all-different constraints. For this
reason, several authors studied linear-inequality formulations for
the convex hull of solutions to a single all-different constraint or
a system of all-different constraints [3,5,6,9]. We remark that in
some cases these descriptions are extended formulations, i.e., they
make use of additional variables; however, here we are only
interested in the description of the convex hull in the original space
of variables.

If nvariables x4, .. ., X, can take valuesin a finite domainD C R
and an all-different constraint is imposed on them, we will write
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(following the notation in [6])
(X1, .., X}z (1)
X1,...,X, €D. (2)

Williams and Yan [9] proved that if D = {1,...,d} for some
positive integer d, then the convex hull of the vectors that satisfy
(1)-(2) is described by the linear system

Do =f©), Scinl, (3)
jes
D ox =g, sciml, 4)
jes
where [n] = {1,...,n}and, for S C [n],

SIS+ 1
f8) = % g) = ISI(d+1) — (). (5)

Note that f (S) is the sum of the |S| smallest positive integers, while
g(S) is the sum of the |S| largest integers that do not exceed d,
therefore inequalities (3)-(4) are certainly valid for every vector x
satisfying (1)-(2). This result extends to an arbitrary finite domain
D C R (with |D| > n) by defining f (S) (resp., g(5)) as the sum of
the |S| smallest (resp., largest) elements in D, for every S C [n].
Note however that in the following we assume D = {1, ..., d} for
some positive integer d, while we will consider the case of a generic
finite domain D in a final remark.

Williams and Yan [9] showed that if d > n then all inequalities
(3)-(4) are facet-defining, thus the convex hull of (1)-(2) needs an
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exponential number of inequalities to be described in the original
space of variables xq, . . ., x,. However, they also gave polynomial-
size extended formulations for the convex hull of (1)-(2).

When d = n, (1)-(2) is the set of permutations of the elements
in [n], and its convex hull is called permutahedron. In this case,
the whole family of inequalities (4) can be dropped and replaced
by the equation Zje[n] X; = f([n]). The permutahedron admits an
extended formulation with O(n log n) constraints and variables [2].

System (3)-(4) not only defines an integral polyhedron, but it
also has the stronger property of being totally dual integral. We re-
call that a linear system of inequalities Ax < b is said to be to-
tally dual integral if for every integer vector c such that the linear
program max{cx : Ax < b} has finite optimum, the dual linear pro-
gram has an optimal solution with integer components. It is known
thatif Ax < bis totally dual integral and b is an integer vector, then
the polyhedron defined by Ax < b is integral (see, e.g., [7, Theo-
rem 5.22]). The total dual integrality of system (3)-(4) follows im-
mediately from the fact that f (resp., g) is a supermodular (resp.,
submodular) function, along with a classical result on polymatroid
intersection [1] (see also [7, Theorem 46.2]). An explicit proof of
the total dual integrality of (3)-(4) is given in [5].

In a more general setting, we might have m > 1 all-different
constraints, each enforced on a different subset of variables N;
[n], i € [m]. In this case, we have the system of conditions

{xj:j € Ni}», 1ie€[m], (6)
X1,...,%, €D. (7)

The following inequalities are of course valid for the convex hull of
solutions to (6)-(7):

D x5 =f(), SCSN,ielm], ®)
Jjes
D x<gS), SCN,ie[ml. 9)
Jjes

However, the above constraints do not give, in general, the convex
hull of the vectors that satisfy (6)-(7). Furthermore, there are even
examples in which some integer solutions to system (8)-(9) do not
lie in the convex hull of the points satisfying (6)-(7). Therefore it
is natural to ask which conditions ensure that the above system
provides the convex hull of the vectors satisfying (6)-(7).

A special case, studied in [6], in which constraints (8)-(9) do
yield the convex hull of solutions to (6)-(7) is now described.
Define N = [n] and assume that N = T U U, where T and U are
disjoint nonempty subsets of N. Define T; = N;NT and U; = N;NU
fori € [m]. If the T;’s form a monotone family of subsets (T; 2
T, © --- 2 Ty) and the U;'s are pairwise disjoint, then Magos
et al. [6] say that the inclusion property holds. They showed that in
this case inequalities (8)-(9) provide the convex hull of solutions to
(6)-(7). We remark that (to the best of the author’s knowledge) this
is the only nontrivial case in which formulation (8)-(9) is known
to define the convex hull of the all-different system.

The proof of Magos et al. [6] is rather lengthy and involved
(overall, it consists of about 25 pages). The purpose of this note is
to give a shorter proof of their result. Indeed, we show something
more: we prove that, under the inclusion property, system (8)-(9)
is totally dual integral. Our proof is an extension of the classical
approach to show the total dual integrality of polymatroids (see,
e.g., |7, Chapter 44]). Specifically, in Section 2 we describe a greedy
algorithm that solves linear optimization over (8)-(9), under the
inclusion property. The correctness of the algorithm is shown in
Section 3 by completing the feasible solution returned by the

algorithm with a dual solution such that the complementary slack-
ness conditions are satisfied. The result of Section 3 also implies the
total dual integrality of system (8)-(9), as the dual solution is in-
teger whenever the primal objective function coefficients are all
integers. We conclude in Section 4 with an extension of the re-
sult, which in particular can be used to deal with a generic finite
domain D.

2. Primal algorithm

Assume that the inclusion property holds for an all-different
system (6)—(7). Recall that:

- N =[n] =TUU,withT and U disjoint and nonempty;
-T;=N;NTandU; = N;NU fori € [m];

-T2 2Ty

- UiNU; = @ for all distinct i, j € [m].

Wilog, N = N{U---UNy, and T = T; = [t] for some positive integer
t. Also, recall that D = [d]. We assume that d > maxe[m |Ni|, oth-
erwise both (6)-(7) and (8)-(9) are infeasible. We use the notation
t; = |T;| and u; = |U;| for i € [m]. Furthermore, we will sometimes
identify an index j € N with the corresponding variable x;; e.g., we
will indifferently say “the indices in T” or “the variables in T”.
Consider the problem of minimizing a linear objective function
cx over the polytope defined by (8)-(9), where c is a row-vector
in R™. If we define § = S ©' S S Ni}, the problem can be

N ie[m
written as follows:

min cx (10)

st Y x5 =f(S), Se8, (11
Jjes

_ijz—g(S), Ses. (12)
jes

We give a greedy algorithm that solves the above linear pro-
gram for an arbitrary ¢ € R". Since the polyhedron defined by
(11)-(12) contains all vectors satisfying (6)-(7), and since we will
show that the solution returned by the algorithm satisfies (6)-(7),
this will prove that system (11)-(12) (i.e., system (8)-(9)) defines
the convex hull of (6)-(7). The algorithm that we present can be
seen as an extension of the greedy algorithm for polymatroids (see,
e.g., [7, Chapter 44]), and also as an extension of the algorithm
given in [5] for the case m = 1.

The procedure is shown in Algorithm 1 and is now illustrated.
Throughout the algorithm, we maintain d clusters of variables
Vi,..., Vg, ie, d (possibly empty) disjoint subsets of N gathering
those variables that will be assigned the same value at the end of
the algorithm. At the beginning (lines 2-3) we have t nonempty
clusters Vy, ..., V;, where V; = {j} for j e [t], while the other
clusters V41, ..., V4 are empty. Thus every variable in T = [t] is
assigned to a different cluster (as these variables are not allowed
to take the same value because of the first all-different constraint),
while the variables in U are not assigned to any cluster. During the
execution of the algorithm, each variable in U will be assigned to
a cluster, and no variable will be ever moved from one cluster to
another.

Notation r(j) indicates the index of the cluster to which variable
x; is assigned. With each cluster V;, j € [d], we associate a pseudo-
cost y;, which is the sum of the costs of all variables in the cluster.
The pseudo-cost of an empty cluster is zero.

Fori =1, ..., m,at the ith iteration of the algorithm we assign
each variable in U; to a different cluster (lines 4-11), as we now
explain. Because of the ith all-different constraint, a variable in U;
cannot be assigned to a cluster containing a variable in T;. Note that
for j € T;, the cluster containing j is V. Therefore only the clusters
V; withj € [d]\T; are feasible for the variables in U;. Lines 5-6 order
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