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a b s t r a c t

An all-different constraint on some discrete variables imposes the condition that no two variables take
the same value. A linear-inequality description of the convex hull of solutions to a system of all-different
constraints is known under the so-called inclusion property: the convex hull is the intersection of the
convex hulls of each of the all-different constraints of the system. We give a short proof of this result,
which in addition shows the total dual integrality of the linear system.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Inmany combinatorial optimization problems one needs to im-
pose one or more all-different constraints, i.e., conditions of the fol-
lowing type: for a given finite (sub)family of discrete variables,
no two variables can be assigned the same value. All-different
constraints arise, for instance, in problems related to timetabling,
scheduling, manufacturing, and in several variants of the assign-
ment problem (see, e.g., [6,9] and the references therein).

Though all-different constraints are mainly studied in the
context of Constraint Programming (see, e.g., [8]), when dealing
with a problem that can be modeled as an integer linear program
it is useful to have information on the polyhedral structure of the
feasible solutions to a system of all-different constraints. For this
reason, several authors studied linear-inequality formulations for
the convex hull of solutions to a single all-different constraint or
a system of all-different constraints [3,5,6,9]. We remark that in
some cases these descriptions are extended formulations, i.e., they
make use of additional variables; however, here we are only
interested in the description of the convex hull in the original space
of variables.

If n variables x1, . . . , xn can take values in a finite domainD ⊆ R
and an all-different constraint is imposed on them, we will write
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(following the notation in [6])

{x1, . . . , xn}≠ (1)

x1, . . . , xn ∈ D. (2)

Williams and Yan [9] proved that if D = {1, . . . , d} for some
positive integer d, then the convex hull of the vectors that satisfy
(1)–(2) is described by the linear system
j∈S

xj ≥ f (S), S ⊆ [n], (3)


j∈S

xj ≤ g(S), S ⊆ [n], (4)

where [n] = {1, . . . , n} and, for S ⊆ [n],

f (S) =
|S|(|S| + 1)

2
, g(S) = |S|(d + 1)− f (S). (5)

Note that f (S) is the sum of the |S| smallest positive integers, while
g(S) is the sum of the |S| largest integers that do not exceed d,
therefore inequalities (3)–(4) are certainly valid for every vector x
satisfying (1)–(2). This result extends to an arbitrary finite domain
D ⊆ R (with |D| ≥ n) by defining f (S) (resp., g(S)) as the sum of
the |S| smallest (resp., largest) elements in D, for every S ⊆ [n].
Note however that in the following we assume D = {1, . . . , d} for
somepositive integer d, whilewewill consider the case of a generic
finite domain D in a final remark.

Williams and Yan [9] showed that if d > n then all inequalities
(3)–(4) are facet-defining, thus the convex hull of (1)–(2) needs an
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exponential number of inequalities to be described in the original
space of variables x1, . . . , xn. However, they also gave polynomial-
size extended formulations for the convex hull of (1)–(2).

When d = n, (1)–(2) is the set of permutations of the elements
in [n], and its convex hull is called permutahedron. In this case,
the whole family of inequalities (4) can be dropped and replaced
by the equation


j∈[n] xj = f ([n]). The permutahedron admits an

extended formulationwithO(n log n) constraints and variables [2].
System (3)–(4) not only defines an integral polyhedron, but it

also has the stronger property of being totally dual integral. We re-
call that a linear system of inequalities Ax ≤ b is said to be to-
tally dual integral if for every integer vector c such that the linear
programmax{cx : Ax ≤ b} has finite optimum, the dual linear pro-
gramhas an optimal solutionwith integer components. It is known
that if Ax ≤ b is totally dual integral and b is an integer vector, then
the polyhedron defined by Ax ≤ b is integral (see, e.g., [7, Theo-
rem 5.22]). The total dual integrality of system (3)–(4) follows im-
mediately from the fact that f (resp., g) is a supermodular (resp.,
submodular) function, along with a classical result on polymatroid
intersection [1] (see also [7, Theorem 46.2]). An explicit proof of
the total dual integrality of (3)–(4) is given in [5].

In a more general setting, we might have m ≥ 1 all-different
constraints, each enforced on a different subset of variables Ni ⊆

[n], i ∈ [m]. In this case, we have the system of conditions

{xj : j ∈ Ni}≠, i ∈ [m], (6)

x1, . . . , xn ∈ D. (7)

The following inequalities are of course valid for the convex hull of
solutions to (6)–(7):
j∈S

xj ≥ f (S), S ⊆ Ni, i ∈ [m], (8)


j∈S

xj ≤ g(S), S ⊆ Ni, i ∈ [m]. (9)

However, the above constraints do not give, in general, the convex
hull of the vectors that satisfy (6)–(7). Furthermore, there are even
examples in which some integer solutions to system (8)–(9) do not
lie in the convex hull of the points satisfying (6)–(7). Therefore it
is natural to ask which conditions ensure that the above system
provides the convex hull of the vectors satisfying (6)–(7).

A special case, studied in [6], in which constraints (8)–(9) do
yield the convex hull of solutions to (6)–(7) is now described.
Define N = [n] and assume that N = T ∪ U , where T and U are
disjoint nonempty subsets of N . Define Ti = Ni ∩T and Ui = Ni ∩U
for i ∈ [m]. If the Ti’s form a monotone family of subsets (T1 ⊇

T2 ⊇ · · · ⊇ Tm) and the Ui’s are pairwise disjoint, then Magos
et al. [6] say that the inclusion property holds. They showed that in
this case inequalities (8)–(9) provide the convex hull of solutions to
(6)–(7).We remark that (to the best of the author’s knowledge) this
is the only nontrivial case in which formulation (8)–(9) is known
to define the convex hull of the all-different system.

The proof of Magos et al. [6] is rather lengthy and involved
(overall, it consists of about 25 pages). The purpose of this note is
to give a shorter proof of their result. Indeed, we show something
more: we prove that, under the inclusion property, system (8)–(9)
is totally dual integral. Our proof is an extension of the classical
approach to show the total dual integrality of polymatroids (see,
e.g., [7, Chapter 44]). Specifically, in Section 2 we describe a greedy
algorithm that solves linear optimization over (8)–(9), under the
inclusion property. The correctness of the algorithm is shown in
Section 3 by completing the feasible solution returned by the

algorithmwith a dual solution such that the complementary slack-
ness conditions are satisfied. The result of Section 3 also implies the
total dual integrality of system (8)–(9), as the dual solution is in-
teger whenever the primal objective function coefficients are all
integers. We conclude in Section 4 with an extension of the re-
sult, which in particular can be used to deal with a generic finite
domain D.

2. Primal algorithm

Assume that the inclusion property holds for an all-different
system (6)–(7). Recall that:

– N = [n] = T ∪ U , with T and U disjoint and nonempty;
– Ti = Ni ∩ T and Ui = Ni ∩ U for i ∈ [m];
– T1 ⊇ · · · ⊇ Tm;
– Ui ∩ Uj = ∅ for all distinct i, j ∈ [m].

Wlog,N = N1∪· · ·∪Nm and T = T1 = [t] for some positive integer
t . Also, recall that D = [d]. We assume that d ≥ maxi∈[m] |Ni|, oth-
erwise both (6)–(7) and (8)–(9) are infeasible. We use the notation
ti = |Ti| and ui = |Ui| for i ∈ [m]. Furthermore, we will sometimes
identify an index j ∈ N with the corresponding variable xj; e.g., we
will indifferently say ‘‘the indices in T ’’ or ‘‘the variables in T ’’.

Consider the problem of minimizing a linear objective function
cx over the polytope defined by (8)–(9), where c is a row-vector
in Rn. If we define S =


i∈[m]

{S : S ⊆ Ni}, the problem can be
written as follows:

min cx (10)

s.t.

j∈S

xj ≥ f (S), S ∈ S, (11)

−


j∈S

xj ≥ −g(S), S ∈ S. (12)

We give a greedy algorithm that solves the above linear pro-
gram for an arbitrary c ∈ Rn. Since the polyhedron defined by
(11)–(12) contains all vectors satisfying (6)–(7), and since we will
show that the solution returned by the algorithm satisfies (6)–(7),
this will prove that system (11)–(12) (i.e., system (8)–(9)) defines
the convex hull of (6)–(7). The algorithm that we present can be
seen as an extension of the greedy algorithm for polymatroids (see,
e.g., [7, Chapter 44]), and also as an extension of the algorithm
given in [5] for the casem = 1.

The procedure is shown in Algorithm 1 and is now illustrated.
Throughout the algorithm, we maintain d clusters of variables
V1, . . . , Vd, i.e., d (possibly empty) disjoint subsets of N gathering
those variables that will be assigned the same value at the end of
the algorithm. At the beginning (lines 2–3) we have t nonempty
clusters V1, . . . , Vt , where Vj = {j} for j ∈ [t], while the other
clusters Vt+1, . . . , Vd are empty. Thus every variable in T = [t] is
assigned to a different cluster (as these variables are not allowed
to take the same value because of the first all-different constraint),
while the variables in U are not assigned to any cluster. During the
execution of the algorithm, each variable in U will be assigned to
a cluster, and no variable will be ever moved from one cluster to
another.

Notation r(j) indicates the index of the cluster towhich variable
xj is assigned. With each cluster Vj, j ∈ [d], we associate a pseudo-
cost γj, which is the sum of the costs of all variables in the cluster.
The pseudo-cost of an empty cluster is zero.

For i = 1, . . . ,m, at the ith iteration of the algorithm we assign
each variable in Ui to a different cluster (lines 4–11), as we now
explain. Because of the ith all-different constraint, a variable in Ui
cannot be assigned to a cluster containing a variable in Ti. Note that
for j ∈ Ti, the cluster containing j is Vj. Therefore only the clusters
Vj with j ∈ [d]\Ti are feasible for the variables inUi. Lines 5–6 order
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