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a b s t r a c t

A matrix is jointly mixable if by permuting the entries in its columns all row sums can be made equal. If
not jointly mixable we want to determine the smallest maximal and largest minimal row sum attainable.
These values provide an approximation of the minimum variance problem for discrete distributions,
estimating the α-quantile of an aggregate random variable with unknown dependence structure. We
relate this NP-hard problem to the multidimensional bottleneck assignment problem and derive a PTAS
in fixed dimension.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problemwe are considering is the following: Given amatrix
A ∈ Rm×d, we are interested in the best way of permuting entries
in each column (independently) so that the maximal row sum is
minimized, or so that the minimal row sum is maximized. Given d
permutations Π = (π1, . . . , πd) ∈ S(m)d we denote by AΠ the
matrix obtained from A by permuting column j by πj, i.e. AΠ

πj(i),j
=

Ai,j. The optimization problems are then

γ (A) := min
Π∈S(m)d

max
16i6m


d

j=1

AΠ
i,j


(1)

and

β(A) := max
Π∈S(m)d

min
16i6m


d

j=1

AΠ
i,j


. (2)

We note that aggregation operations other than + are conceiv-
able (e.g., min,max, ×), but will not be treated here.

This problem is motivated by an application in quantitative
finance, but in fact arises whenever one needs to estimate the in-
fluence of stochastic dependence on a statistical problem: Con-
sider an aggregate random variable L of the form L =

d
i=1 Li,

where the random variables Li are possibly dependent. Denote by

E-mail address: uhaus@ifor.math.ethz.ch.

FL(x) = P(L 6 x) the distribution function of L.We are interested in
computing the α-quantile (Value-at-Risk, VaRα) F−1

L (α) = inf{x ∈

R : FL(x) > α}, for α ∈ (0, 1). Often we have no data on the joint
distribution L, but only on the marginal distributions Fj of the con-
stituent random variables Lj, and we also lack information on the
dependence structure between them.

In the following we will assume that the marginal distributions
are discrete, or have been approximated from below and from
above as described in [10]: For Fj the generalized inverse is
F−1
j (α) = sup{x ∈ R : Fj(x) 6 α}. Consider a discretization inN+1
points. Compute the values qjr = F−1

j (r/N) for r ∈ {0, 1, . . . ,N}.
Denoting by 1[a,b) the characteristic function on the interval [a, b),

Fj(x) =
1
N

N−1
r=0

1
[qjr ,+∞)

(x) and Fj(x) =
1
N

N
r=1

1
[qjr ,+∞)

(x),

provide discrete approximations of Fj with Fj > Fj > Fj.
Dependence among the individual Fj will manifest itself in the

way the values qjr = F−1
j (r/N) are appearing in the matrix

A =

q10 · · · qd0
...

...

q1N · · · qdN

 .

In particular, the row sums may vary significantly: Consider d =

2 and the uniform discrete distribution on {0, . . . ,N}. If L1 and
L2 are comonotonic (i.e. there is perfect positive dependence
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among the random variables), then (q10, . . . , q
1
N) = (q20, . . . , q

2
N)

with row sums {0, 2, . . . , 2N}. If, on the other hand, F1 and F2
are countermonotonic (perfect negative dependence among the
random variables), then (q10, . . . , q

1
N) = (q2N , . . . , q20), and all row

sums are equal to N . If we want to find an upper bound for F−1
L (α)

we need to consider matrices with entries qjr for r
N > α, and for

lower bounds matrices constructed from qjr for r
N 6 α and each

time minimize the variance of the row sums of A. This intuition
is made exact by a representation theorem of Rüschendorf
[14, Theorem 2], showing that for discrete distribution functions,
and due to the uniform discretization inherent in our definition
of Fj and Fj, solving the minimum variance problem amounts to
determining γ (A) − β(A) for the matrix A, since it is enough to
minimize over the set of all rearrangements of the Fj. We refer
to [10,11,15,9] for recent applications and to [14,12,1] for more
details on the general concept of rearrangements of functions.

Besides computing (or approximating) γ (A) and β(A), one is
also interested in deciding whether for a given matrix γ (A) =

β(A). Wewill call such amatrix jointly mixable, in analogy with the
definition of this concept by Wang and Wang [15] for distribution
functions.

In this paperwe show that deciding jointmixability is a strongly
N P-complete problem, even for a fixed number of columns, but
can be solved using dynamic programming in pseudopolynomial
time for a fixed number of rows. We show that the algorithm
proposed by Puccetti et al. in [10] to compute γ (A) and β(A) is
not an exact method unless N P ⊆ ZPP , despite its impressive
computational success [2]. Finally, for matrices in fixed (column)
dimension we present a polynomial-time approximation scheme.

2. An application

A typical application is the following (see [2]): Under the Basel
II and III regulatory framework for banking supervision, large
international banks are allowed to come up with internal models
for the calculation of risk capital. For operational risk the so-called
Loss Distribution Approach gives them full freedom concerning the
stochastic modeling assumptions used. The resulting risk capital
must correspond to a 99.9% quantile of the aggregated loss data
over a year. This corresponds to computing the Value-at-Risk
VaR0.999(L) at α = 0.999 for an aggregate loss random variable
L =

d
i=1 Li, but makes no requirements on the interdependence

between the individual loss random variables Li corresponding to
the individual business lines: Assumptionsmade in the calculation
must only be plausible and well founded. Estimating the upper
bound and lower bound of the VaR over all possible dependence
structures is hence relevant both from the regulator’s point of view,
as well as from the bank’s point of view, to estimate worst case
hidden risks in the models presented under the Loss Distribution
Approach.

3. Complexity

It is known that for two columns the joint mixability problem
is solvable explicitly (see references in [13]). This is also apparent
by recognizing that the computation of γ (A) can be understood
as solving a multidimensional bottleneck assignment problem.
The multidimensional bottleneck assignment problem asks for the
computation of

min
π1,...,πd

max
16i6m

cπ1(i),...,πd(i)

for am × · · · × m  
d

cost table C . Defining ci1,...,id = Ai1,1 +· · ·+Aid,d

we see that γ (A) can be computed by solving a multidimensional

bottleneck assignment problem.UsingObservation 1 belowwe can
similarly compute β(A) and thus check joint mixability.

In dimension 2, the bottleneck assignment problem models
the following problem: Given a set of workers and a set of
tasks, where the time of worker i performing task j is cij, find a
simultaneous assignment of all workers to all tasks such that the
maximal time spent by anyworker (the bottleneck of the schedule)
is minimized. Fulkerson et al. showed that the 2-dimensional
bottleneck assignment problem can be transformed into a linear
assignment problem, and thus is polynomially solvable [3].

The multi-dimensional bottleneck assignment problem of as-
signing (equal-sized) crews of workers to (equal-sized) groups of
tasks is much harder; even some versions of the 3-dimensional
bottleneck assignment problem with extra constraints on the ma-
trix A do not admit a polynomial time approximation scheme [7].

By adding µ = −min16i6m, 16j6d Aij to each entry of A we can
always shift the matrix to make the smallest entry equal to zero,
changing all row sums by +µ · d. For convenience we will hence
restrict our attention to integral, nonnegative matrices. Assuming
that integrality is not a major restriction, since rational matrices
can without loss of generality be scaled to become integral, and
rational matrices provide a dense subset of the real matrices that
could arise in discretizing distribution functions.

First note that β and γ are related as follows:

Observation 1. Let A ∈ Zm×d, and denote by

l := max
16i6m,16j6d

Aij

its largest entry. Define A′ by A′

ij = l− Aij. Then β(A) = d · l− γ (A′).

Hence we only ever need to consider one of the two values.
Let us consider some matrix AΠ with row sums rΠ

1 , . . . , rΠ
m . By

summing up
m

i=1 r
Π
i =

m
i=1
d

j=1 Aij, so if rΠ
1 = · · · = rΠ

m

the candidate value is s =
1
m

m
i=1
d

j=1 Aij. It always holds that
max16i6m rΠ

i > s, so also γ (A) > s. But if γ (A) = s then all row
sums need to be equal since s is the average row sum, so A is jointly
mixable. This observation shows that deciding joint mixability of A
and computing β or γ are polynomially equivalent:

Observation 2. Let A ∈ Zm×d. A is jointly mixable if and only if
γ (A) = β(A) =

1
m

m
i=1
d

j=1 Aij.

It turns out that this is sufficient for showing linear time
decidability of joint mixability if the entries of A are restricted to
at most two values: Those can be mapped to {0, 1}, and then the
algorithm used in the proof below provides a linear time check for
joint mixability:

Theorem 1. Let A ∈ {0, 1}m×d. A is jointly mixable if and only if
m |


16i6m, 16j6d Aij. The permutation achieving the joint mix can

be computed in linear time O(m · d).

Proof. ‘‘⇒’’ Let s =
m

i=1
d

j=1 Aij. If m - s then by Observation 2
the matrix A cannot be jointly mixable.

‘‘⇐’’ Assume m |


16i6m,16j6d Aij. We need to permute the
columns of A such that exactly r =

s
m ∈ {0, . . . , d} entries in each

row have value 1.
This can always be done: Define for i ∈ {1, . . . ,m} the defect

δ(i) = r −
d

j=1 Aij and φ =
m

i=1 |δ(i)| the total defect. Clearly,
φ = 0 if and only if all row sums of the matrix are equal to r .

Startingwith j = 2 define Sj = {i ∈ {1, . . . ,m} : δ(i) > 0, Aij =

1} and Dj = {i ∈ {1, . . . ,m} : δ(i) < 0, Aij = 0}. If Sj ≠ ∅ and
Dj ≠ ∅ let tj = min{|Sj|, |Dj|} and swap the entries of column A·j
indexed by the largest tj entries of Sj with those indexed by the
smallest tj entries of Dj. Repeat in increasing order, for all j 6 d.
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