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a b s t r a c t

In this paper, we consider the problem of finding the nucleolus of arborescence games. We prove that the
nucleolus of arborescence games in directed acyclic graphs can be found in linear time.
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1. Introduction

In cooperative game theory, we consider how to distribute a
profit generated by a group to its members. For this problem, sev-
eral solution concepts have been proposed. One of the most im-
portant solution concepts is the concept of the core. This concept
requires that no subgroup of members can benefit by break-
ing away from the grand coalition. However, even if the core is
nonempty, it may not be a singleton. Hence, it is unclear how to
distribute a profit. The concept of the nucleolus was introduced by
Schmeidler [22] as a singleton solution of cooperative games. The
nucleolus is the unique distribution that lexicographically maxi-
mizes the vector of non-decreasingly ordered excesses. It is well
known that if the core is nonempty, then it always contains the
nucleolus.

In this paper, we consider the algorithmic problem of finding
the nucleolus. For general cooperative games, Kopelowitz [15] and
Maschler, Peleg, and Shapley [17] proposed an algorithm for find-
ing the nucleolus based on solving a sequence of linear programs.
However, the size of these linear programs may be exponentially
large in the input size. Computing the nucleolus is a notoriously
hard problem. The first polynomial-time algorithm computing the
nucleoluswas proposed byMegiddo [18] for tree enterprises. Later
on, several polynomial-time algorithms were proposed [23,14,12,
5,21,9,1,3,2,4,19,11,16]. On the other hand,NP-hardness results for
computing the nucleolus were proved in the papers [5,10,8].

In this paper, we consider the problem of finding the nucleo-
lus of arborescence games introduced by Deng, Ibaraki, and Nag-
amochi [6]. Arborescence games model a situation in which we
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want to maintain paths from a specified vertex to all vertices in a
network [6]. In this paper, we prove that the nucleolus of arbores-
cence games in directed acyclic graphs can be found in linear time.

The rest of this paper is organized as follows. In Section 2, we
give necessary definitions and known results. In Section 3, we
consider essential coalitions of arborescence games. In Section 4,
we prove that the nucleolus of arborescence games in directed
acyclic graphs can be found in linear time.

2. Preliminaries

Wedenote byR the set of reals. For each finite setN , each subset
S of N , and each vector x in RN , we define x(S) :=


a∈S x(a).

2.1. Cooperative games and solution concepts

A cooperative game is a pair (N, v) of a finite set N of players
and a function v: 2N

→ R such that v(∅) = 0. We call a subset
of N a coalition. A vector x in RN is called a allocation of (N, v), if
x(N) = v(N). An allocation x of (N, v) is called an imputation of
(N, v), if x(i) ≥ v({i}) for every player i inN . We denote by I(N, v)
the set of imputations of (N, v). That is, we define

I(N, v) := {x ∈ RN
| x(N) = v(N), ∀i ∈ N: x(i) ≥ v({i})}.

We define the core C(N, v) of (N, v) by

C(N, v) := {x ∈ RN
| x(N) = v(N), ∀S ⊆ N: x(X) ≥ v(S)}.

For each vector x inRN and each coalition S ofN , we define an excess
e(S, x) by

e(S, x) := x(S) − v(S).
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For each vector x in RN , the excess vector θ(x) is defined as the
2|N|

− 2 dimensional vector whose components are the excesses
for non-empty coalitions S of N such that S ≠ N and are arranged
in a non-decreasing order. The nucleolus of (N, v) is defined as the
imputation x of (N, v) that lexicographically maximizes θ(x). It is
well known [20] that if the core is nonempty, then the nucleolus
always exists and it is contained in the core.

Kopelowitz [15] andMaschler, Peleg, and Shapley [17] proposed
an algorithm for computing the nucleolus of (N, v) by recursively
solving the following linear programs LPk. Initially,wedefineJ0 :=

{∅,N} and ε0 := 0. For each positive integer k, the linear program
LPk is defined by

LPk


max ε

s.t. x(S) ≥ v(S) + ε (S ∈ 2N
\ (J0 ∪ J1 ∪ · · · ∪ Jk−1))

x(S) = v(S) + εt (t = 0, 1, . . . , k − 1 and X ∈ Jt)
(ε, x) ∈ R × I(N, v).

For each positive integer k, we define εk as the optimum objective
value of the linear program LPk, and we define a family Jk of
coalitions of N by
Jk := {S ⊆ N | ∀x ∈ Ok: x(S) = v(S) + εk},

where a set Ok of vectors in RN is defined by
Ok := {x ∈ RN

| (εk, x) is an optimal solution of LPk}.

This sequential linear programming process for computing the
nucleolus is denoted by SLP(N, v). A coalition X of N is said to be
essential, if
v(S) >


T∈P

v(T )

for every partition P of S such that P ≠ {S}. We define E(N, v)
as the set of all essential coalitions of N . It is known [13] that if the
core is not empty, the nucleolus can be completely determined by
essential coalitions.

Theorem 1 (Huberman [13]). For each cooperative game (N, v)
whose core is not empty, dropping the constraints for all coalitions
S of N that is not contained in E(N, v) do not change the result of
SLP(N, v).

It is known [11] that essential coalitions form a characterization
set for the nucleolus. Granot, Granot, and Zhu [11] proved that if
the size of a characterization set is polynomially bounded in the
number of players, and the identification of the elements in the
characterization set can be done in strongly polynomial time, then
the nucleolus can be found in strongly polynomial time. However,
in arborescence games, there can be exponentially many essential
coalitions (see Section 3).

2.2. Arborescence games

Let D = (V , A) be a directed graphwith a specified vertex r . We
allow D to have parallel arcs, but it has no loop. For each subset X
of V , we define
ϱD(X) := {a = (u, w) ∈ A | u ∉ X, w ∈ X}.

That is, ϱD(X) represents the set of arcs entering X . For each vertex
u in V , we write ϱD(u) instead of ϱD({u}). A subset F of A is called
an r-cut set of D, if there exists a subset X of V such that r ∉ X and
ϱD(X) = F . An r-cut set whose size is minimum among all r-cut
sets is called aminimum r-cut set.

A subgraph T = (V , B) of D is called an r-arborescence, if it
satisfies the following two conditions.
• For every vertex u in V , there exists a directed path from r to u

in T .
• ϱD(r)∩ B = ∅, and |ϱD(u)∩ B| = 1 for every vertex u in V \ {r}.
It is not difficult to see that an r-arborescence is a spanning
tree whose arcs are directed away from r . The following theorem
proved by Edmonds [7] plays an important role in the sequel.

Theorem 2 (Edmonds [7]). In each directed graph D = (V , A) with
a specified vertex r, there exist k arc-disjoint r-arborescences if and
only if |F | ≥ k for every r-cut set F of D.

We define a function vD: 2A
→ R as follows. For each subset

B of A, vD(B) is defined as the maximum number of arc-disjoint
r-arborescences in the directed graph H = (V , B). Theorem 2
implies that if the minimum size of an r-cut set of D is equal to
k, then vD(A) = k. An arborescence game in D is defined as the pair
(A, vD).

A cooperative game (N, v) is called a convex game, if

∀S, T ⊆ N: v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

Kuipers [16] proposed a polynomial-time algorithmcomputing the
nucleolus of convex games. Unfortunately, an arborescence game
is not always a convex game. Let D = (V , A) a directed acyclic
graph such that

V = {r, u, w}, A = {a = (r, u), b = (r, u), c = (u, w)}.

In this graph, since

vD({a, c}) = 1, vD({b, c}) = 1,
vD({a, b, c}) = 1, vD({c}) = 0,

we have

vD({a, c}) + vD({b, c}) > vD({a, b, c}) + vD({c}).

Thus, the arborescence game in this graph is not a convex game.
An r-arborescence T = (V , B) in D is said to be proper, if

|F ∩ B| = 1 for every minimum r-cut set F of D. An arc a in A is
called a dummy arc, if

vD(A) = vD(A \ {a}),

i.e., there exists vD(A) arc-disjoint r-arborescences in the directed
graph H = (V , A \ {a}).

Lemma 3. For each directed graphD = (V , A)with a specified vertex
r and each arc a in A, a is a dummy arc if and only if there exists no
minimum r-cut set F of D such that a ∈ F .

Proof. This lemma immediately follows from Theorem 2. �

The following result related to the core of arborescence games
is known.

Theorem 4 (Deng, Ibaraki, and Nagamochi [6]). For every directed
graph D = (V , A) with a specified vertex r, C(A, vD) is not empty.

3. Essential coalitions of arborescence games

In this section, we consider essential coalitions of arborescence
games. In the sequel, we call a subset of an arc set a coalition.

Lemma 5. For each directed graphD = (V , A)with a specified vertex
r and each non-empty coalition B of A, B ∈ E(A, vD) if and only if B
consists of a single arc in A or the directed graph T = (V , B) is an
r-arborescence.

Proof. We first prove the if part. For every arc a in A, there exists
no partition P of {a} such that P ≠ {{a}}. This implies that {a} is
essential. Assume that we are given an r-arborescence T = (V , B).
For every coalition F of B such that F ≠ B, since the directed graph
H = (V , F) does not contain an r-arborescence, vD(F) = 0 holds.
Since vD(B) = 1, this observation implies that B is essential.

Next we prove the only if part. Assume that B is a non-empty
coalition in E(A, vD). If B contains more than one arc and the
directed graph T = (V , B) does not contain an r-arborescence,
then vD(F) = 0 for every coalition F of B. This implies that B
is not essential. We assume that the directed graph H = (V , B)
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