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a b s t r a c t

We consider a two-person zero-sum continuous-time Markov game G with denumerable state space,
Borel action spaces, unbounded payoff and transition rates, under the long-run expected average payoff
criterion. To approximate numerically the value of G we construct finite state and actions game models
Gn whose value functions converge to the value of G. Rates of convergence are given. We propose a policy
iteration algorithm for the finite state and actions games Gn. We show an application to a population
system.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with a two-person zero-sum contin-
uous-timeMarkov gamemodel G under the long-run average pay-
off criterion. The state space is a denumerable set, the actions
spaces of the players are Borel spaces, and the transition and pay-
off rates may be unbounded. Under adequate conditions, which
include the usual drift inequalities, continuity and compactness
requirements, and irreducibility hypotheses, it is known that the
game model G has a value and that the players have optimal (ran-
domized) stationary strategies. Moreover, the value function and
the optimal strategies can be characterized by means of an ‘‘aver-
age optimality equation’’. The reader can consult [7] or [12, Chapter
10] for details.

The average optimality equation, however, cannot be solved
in general (it requires, in particular to determine saddle points
of functions defined on infinite-dimensional spaces of probabil-
ity measures). Therefore, some kind of approximation technique is
needed to provide computable approximations of the value of the
game. Here,we propose a discretization scheme that approximates
the gamemodelGwith finite state and actions gamemodelsGn, for
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n ≥ 1. (Loosely, the discretization of the state and actions spaces
becomes more accurate as the index n grows.) This discretization
consists in truncating the state space and in choosing finite actions
sets that are somehow ‘‘dense’’ in the Hausdorff metric. We prove
that the value function of the games Gn converges to the value
function of G as n → ∞ and, moreover, we provide convergence
rates that can be explicitly determined from the data of the orig-
inal game model G. To the best of our knowledge, such approx-
imation techniques have not been studied for average games. A
similar approach for approximating continuous-time discounted
constrained and unconstrained controlled Markov chains can be
found in [9,11], respectively, and in [13] for the average reward
criterion. Approximations of discounted games have been studied
in [14].

To solve the finite state and actions average game Gn we in-
troduce a policy iteration algorithm (PIA), whose convergence is
proved. A PIA for perfect information games has been proposed
in [1]. Let us mention that, in [1], the PIA is of finite nature while,
in our context (in which the two players choose their actions si-
multaneously) the PIA is of continuous nature because they do not
necessarily exist optimal pure strategies. Our PIA combines a (con-
trol) ‘‘optimization’’ step with a ‘‘minimax improvement’’ step. As
we will see, it can be reduced to solve iteratively linear program-
ming problems, which makes it computationally tractable. Some
other techniques have been proposed in the literature to solve
explicitly such finite average games. We may cite, for instance, a
nonlinear programming approach in [4], or the general theoretical

http://dx.doi.org/10.1016/j.orl.2014.12.004
0167-6377/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2014.12.004
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2014.12.004&domain=pdf
mailto:j.lorenzo@ccee.ucm.es
mailto:ihn@math.cinvestav.edu.mx
mailto:tprieto@ccia.uned.es
http://dx.doi.org/10.1016/j.orl.2014.12.004


J.M. Lorenzo et al. / Operations Research Letters 43 (2015) 110–116 111

framework proposed in [3]; see Example 2 therein for an applica-
tion to a game model.

Finally, let us introduce some notation that will be used
throughout the paper. The Borel σ -algebra of a subset of a topo-
logical space C is denoted by B(C). In this paper, measurability
is always referred to the Borel σ -algebra. ID stands for the in-
dicator function of a set D. The Hausdorff distance between two
closed sets F ,G of a metric space (X, dX ) is ρX (F ,G) = supx∈F
infy∈G{dX (x, y)} ∨ supy∈G infx∈F {dX (x, y)}, where ∨ means ‘‘maxi-
mum’’. If µ is a measure on some measure space and f is a mea-
surable function, we write µ(f ) =


fdµ. We recall that weak

convergence of probability measures (denoted by
d

→) on a com-
pact metric space X is metrizable with the Wasserstein distance,
defined as d0(µ, ν) = sup{µ(f ) − ν(f )} where the supremum
ranges over all 1-Lipschitz continuous functions f on X; see The-
orems 8.3.2 and 8.10.45, and Section 8.10(viii) in [2].

The rest of the paper is organized as follows. In Section 2 we
state our main definitions and assumptions on the game model
G, recall some known results on continuous-time Markov games,
and prove some preliminary results. The finite state and actions
approximations Gn are defined in Section 3, in which we prove
convergence of the value functions. The policy iteration algorithm
for solving Gn is introduced also in Section 3. Finally, in Section 4,
we show an application to a population model and we give some
numerical approximations to illustrate our results.

2. Definitions, assumptions, and preliminaries

We consider a zero-sum continuous-time Markov game model
G = {S, A, B,K,Q , r} with the following elements:
• The state space is S = {0, 1, 2, . . .}.
• The action spaces for player 1 and 2 are the Borel spaces A and

B, respectively, with metrics dA and dB. (We recall that a Borel
space is ameasurable subset of a complete and separablemetric
space.)

• The actions available for player 1 and 2 in state i ∈ S are
the measurable sets A(i) ⊆ A and B(i) ⊆ B, respectively. Let
K = {(i, a, b) ∈ S × A × B : a ∈ A(i), b ∈ B(i)}.

• The system’s transition rates are Q ≡ {qij(a, b)}(i,a,b)∈K,j∈S . For
every i, j ∈ S, the function (a, b) → qij(a, b) is measurable
on A(i) × B(i). The transition rates verify: qij(a, b) ≥ 0 for
all (i, a, b) ∈ K and j ∈ S such that i ≠ j and, in addition,
they are conservative and stable, i.e.,


j∈S qij(a, b) = 0 for all

(i, a, b) ∈ K and q(i) := sup(a,b)∈A(i)×B(i){−qii(a, b)} < ∞ for
all i ∈ S.

• The payoff rate function is r : K → R. For each i ∈ S, the
function (a, b) → r(i, a, b) is measurable on A(i)× B(i).

The game is played as follows. At each time t ≥ 0 both players
observe the state of the system i ∈ S and then they independently
and simultaneously choose two actions a ∈ A(i) and b ∈ B(i). On
the small time interval [t, t + dt], the system makes a transition
to the state j ∈ S with probability qij(a, b)dt or remains in state
i ∈ S with probability 1 + qii(a, b)dt . Player 1 receives a reward
r(i, a, b)dt while player 2 incurs a cost r(i, a, b)dt . Player 1 wants
to maximize his long-run expected average payoff, while the goal
of player 2 is to minimize his long-run expected average payoff.
Before giving a formal definition of the strategies of the players and
the average payoff criterion, we will state our assumptions on the
game model G.

Definition 2.1. A function w : S → [1,∞) is called a Lyapunov
function on S if w is monotone nondecreasing and limi→∞w(i)
= ∞.

The w-norm of a function u : S → R is defined as ∥u∥w =

supi∈S{|u(i)|/w(i)}. LetBw(S)be the family of functionsuon Swith
∥u∥w < ∞, which is a Banach space with thew-norm.

Assumption 2.2. There exists a Lyapunov function w on S that
verifies the following conditions.

(i) There exist c1 > 0 and d1 ≥ 0, and a finite set D ⊂ S with
j∈S qij(a, b)w(j) ≤ −c1w(i)+ d1ID(i) for all (i, a, b) ∈ K.

(ii) For all i ∈ S we have q(i) ≤ w(i).
(iii) For someM > 0, |r(i, a, b)| ≤ Mw(i) for all (i, a, b) ∈ K.

We say that π1
≡ {π1

t (C |i)}t≥0,i∈S,C∈B(A(i)) is a randomized
Markov strategy for player 1 when C → π1

t (C |i) is a probability
measure on A(i) for each i ∈ S and t ≥ 0, and, in addition, for each
i ∈ S and C ∈ B(A(i)), the function t → π1

t (C |i) is measurable on
[0,∞). Let Π1 be the set of all randomized Markov strategies for
player 1. The setΠ2 of randomized Markov strategies for player 2
is given a similar definition.

The family of probability measures on A(i) and B(i) are respec-
tively denoted by A(i) and B(i), for all i ∈ S. We say that a ran-
domized Markov strategy π1

∈ Π1 is stationary when it does not
depend on t ≥ 0. Consequently, the familyΠ1,s of randomized sta-
tionary strategies for player 1 can be identified with


i∈S A(i). Sim-

ilarly, the family of randomized stationary strategies for player 2 is
Π2,s

=


i∈S B(i).
Given φ ∈ A(i), ψ ∈ B(i), and i, j ∈ S, let

qij(φ, ψ) =


A(i)


B(i)

qij(a, b)ψ(db)φ(da)

r(i, φ, ψ) =


A(i)


B(i)

r(i, a, b)ψ(db)φ(da).

If (π1, π2) ∈ Π1
×Π2 wewrite qij(t, π1, π2) = qij(π1

t (·|i), π
2
t (·|i))

and r(i, t, π1, π2) = r(i, π1
t (·|i), π

2
t (·|i)) for all i, j ∈ S and t ≥ 0.

For stationary strategies (π1, π2) ∈ Π1,s
×Π2,s, these expressions

do not depend on t ≥ 0 and they will be written as qij(π1, π2) and
r(i, π1, π2). Notations such as, e.g., r(i, φ, b) or qij(a, ψ) are given
the obvious definitions.

LetΩ = K[0,∞) be the space of all the sample paths of the game
endowed with the product σ -algebra F . For each t ≥ 0, let x(t),
a(t), and b(t) be the coordinates projections from Ω to S, A, and
B, respectively. We state the next theorem on a somewhat loose
form; for details, the reader can consult [7].

Theorem 2.3. Suppose that Assumptions 2.2(i)–(ii) hold and fix an
arbitrary pair of strategies (π1, π2) ∈ Π1

×Π2.

(i) There is a unique regular transition function Pπ
1,π2

ij (s, t), for i, j ∈

S and t ≥ s ≥ 0, with transition rates qij(s, π1, π2).
(ii) For each initial state i ∈ S at time 0 there exists a unique prob-

ability measure on (Ω,F ), denoted by P i,π1,π2
, that models the

dynamics of the state of the system and the actions of the players.

The expectation operator associated to P i,π1,π2
will be denoted

by E i,π1,π2
. For a proof of statement (i) we refer to [8, Appendix C],

while the proof of (ii) can be found in [7]. Slightly abusing the
notation, we will refer to {x(t)}t≥0, {a(t)}t≥0, and {b(t)}t≥0 as the
state and the actions processes for the players when P i,π1,π2

is
given.

Under Assumption 2.2(i), given an initial state i ∈ S and a pair
of strategies (π1, π2) ∈ Π1

×Π2, by [8, Lemma 6.3] we have

E i,π1,π2
[w(x(t))] ≤ e−c1tw(i)+

d1
c1
(1 − e−c1t) for all t ≥ 0. (2.1)

The long-run expected average payoff (or average payoff) is

J(i, π1, π2) = lim sup
T→∞

1
T
E i,π1,π2

 T

0
r(x(t), a(t), b(t))dt


.
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