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a b s t r a c t

The Pickup and Delivery Problemwith Transfers (PDPT) consists of defining a set of minimum cost routes
in order to satisfy a set of transportation requests, allowing them to change vehicles at specific locations.
In this problem, routes are strongly interdependent due to request transfers. Then it is critical to efficiently
check if inserting a request into a partial solution is feasible or not. In this article, we present a method to
perform this check in constant time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Pickup and Delivery Problem with Transfers (PDPT) [3]
consists of defining a set of routes that minimize the distance
traveled in order to satisfy a set of transportation requests. Each
transportation request has a known origin called the pickup point
and a destination called the delivery point. The PDPT allows for
transfers (also referred to as preemption in other papers): a request
may be picked up by one vehicle, dropped at a transfer point and
later be moved to its delivery point by another vehicle. Several
requests can share a vehicle as long as its capacity is not exceeded.
The service at pickup and delivery points must occur during time
windows.

Neighborhood-based heuristics are common methods for
solving vehicle routing problems with time-related constraints.
It is well known that a critical factor of performance is the
ability of the method to quickly check the feasibility of a solution.
For example, Hunsaker and Savelsbergh discussed a sufficient
condition to assess the feasibility of a route in the dial-a-ride
problem under maximum wait time and maximum ride time
constraints [6]. They show that this sufficient condition can be
checked in linear time. Firat and Woeginger show that the whole
feasibility check can be performed in linear time [5]. Feasibility
testing raises an additional difficulty in the case of the PDPT where
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routes are interdependent. Transferring a request from one vehicle
to another introduces precedence constraints at the transfer
point. Since in many heuristic methods, millions of insertions are
evaluated during the search, their feasibility must be checked as
efficiently as possible.

The previous heuristic algorithms developed for the PDPT did
not discuss the complexity of their feasibility tests [7,8].
Contributions of this note. In the PDPT, checking the feasibility of
a request insertion contains two parts. The first part checks the
temporal constraints of the problem. We propose an incremental
method which enables us to check in constant time if a given
insertion is consistent with the temporal constraints of the
problem. This method is based on the Forward Time Slack principle
of Savelsbergh [9]. The second part checks the vehicle capacity
constraints. Since this test is similar to those performed in the
pickup and delivery problemwith no transfer, we do not discuss it.
The present paper covers only the PDPT, butwe believe thiswork is
relevant for a variety of vehicle routing problems with precedence
or synchronization constraints (see [4] for a survey).

Inmany pickup and delivery applications, the time of departure
or arrival of vehicles may be imposed. Without loss of generality,
we assume that all vehicles leave the depot at time 0 and all
requests are serviced as early as possible. Our approach can be
easily adapted to the symmetric case, with imposed arrival date
at the depot and requests serviced as late as possible.

The remainder of the paper is organized as follows: The
PDPT is formally stated in Section 2. In Section 3 we recall the
Forward Time Slack principle. Section 4 defines the feasibility
problem. Section 5 extends the Forward Time Slack principle to
the PDPT. Section 6 presents the feasibility test for an insertion
without transfer, while Section 7 concerns the insertion of a

0167-6377/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2013.01.007

http://dx.doi.org/10.1016/j.orl.2013.01.007
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
mailto:renaud.masson@mines-nantes.fr
mailto:fabien.lehuede@mines-nantes.fr
mailto:olivier.peton@mines-nantes.fr
http://dx.doi.org/10.1016/j.orl.2013.01.007


212 R. Masson et al. / Operations Research Letters 41 (2013) 211–215

request through a transfer point. The feasibility check described
in this article requires some preprocessing which is described in
Section 8: each time a request is removed from or inserted into
a current solution, the service times of the requests and a matrix
of waiting times must be updated. This update has a quadratic
complexity but it is much less frequent than the constant time
feasibility check described here.

2. The pickup and delivery problem with transfers

The PDPT can be formally described as follows. LetR be the set of
transportation requests, T the set of transfer points and K the set of
homogeneous vehicles of capacity Q . A request r ∈ R corresponds
to the transportation of qr load units from a pickup point pr to a
delivery point dr . The sets of all pickup and delivery points are
denoted by P and D respectively. Each vehicle performs a single
route. The starting and ending depots of vehicles are designated by
o and o′ respectively. The PDPT is defined on a complete directed
graph G = (V ,U) where V = P ∪ D ∪ T ∪ {o} ∪ {o′

} and U =

{(u, v)|u, v ∈ V , u ≠ v}. With each arc (u, v) ∈ U is associated
a non-negative travel time θu,v . We assume that all travel times
respect the triangle inequality. A timewindow [ev, lv] is associated
with each vertex v ∈ V , where ev and lv represent the earliest
and the latest time at which the service can begin at vertex v. The
service at each vertex v ∈ P ∪ D ∪ T has a known duration sv ,
modeling the time needed to get requests in or off the vehicle. The
number of load units carried simultaneously by a vehicle cannot
exceed its capacity Q .

A vehicle can wait at a vertex only if it arrives there before
the opening of the corresponding time window. If two requests
have a common pickup or delivery point, the corresponding vertex
is duplicated. According to this modeling, a vertex cannot be
associated with more than one request.

A solution of the PDPT is a set of |K | routes serving all requests
such that each vehicle starts at o and ends at o′. For every request
r ∈ R, vertices pr and dr can be served by the same route, provided
that pr is served before dr . Vertices pr and dr can also be served by
distinct routes k ∈ K and k′

∈ K . In this case k and k′ have to visit
a common transfer point τ ∈ T , such that τ is visited after pr in
route k and before dr in route k′. Moreover, r must get off vehicle
k at τ before being reloaded into k′. The objective of the PDPT is to
serve all requests at minimal cost.

3. Forward time slack

We recall the principle of Forward Time Slack proposed by
Savelsbergh [9] for the Traveling Salesman Problem with Time
Windows (TSPTW) and the Vehicle Routing Problem with Time
Windows (VRPTW).

Let us first introduce some notation that is used all along the
paper: let u and v be two vertices serviced by a route k and ψu,v
the ordered set of vertices on the path (u, . . . , v). The waiting
time at a vertex i ∈ ψu,v is denoted by wi. The direct predecessor
and successor of vertex i in route k are denoted by ρ(i) and σ(i)
respectively. The set of all successors of i is denoted by Γ (i).

We assume that the service times are scheduled as early as
possible. Thus the service time hv at v is equal to the service time
hu, plus the travel and service durations along the path, plus the
waiting times at the vertices of the path. If we denote TWTψu,v =

i∈ψσ(u),v
wi, the total waiting time on path (u, . . . , v), then

hv = hu +


i∈ψu,ρ(v)

(si + θi,σ (i))+ TWTψu,v . (1)

For each vertexuon a route k, Savelsbergh introduces thenotion
of forward time slack Fu to represent the maximal amount of time
the service at vertex u can be postponedwithout violating any time

Fig. 1. Example of a precedence graph for two routes interconnected at transfer
points τ and τ ′ .

window at its successors:

Fu = min
i∈{u}∪Γ (u)

li − hu −


j∈ψu,ρ(i)

(sj + θj,σ (j))

 .
Using forward time slacks, the feasibility of a client insertion in

a route can be checked in constant time. As pointed out by Cordeau
et al. [1], based on Eq. (1), this equation can be rewritten as

Fu = min
i∈{u}∪Γ (u)


TWTψσ(u),i + li − hi


. (2)

According to [9], the feasibility of 2-exchanges and or-
exchanges for the TSPTW and the VRPTW can be checked in
constant time if the variable TWTψu,v is known for any pair of
vertices (u, v) in the considered route.

4. Insertion feasibility for the PDPT

We consider a partial solution s of the PDPT that satisfies the
temporal constraints of the problem. Let us denote by Rs ⊂ R
the subset of requests served in solution s. The sets of pickup
and delivery vertices in this solution are denoted by Ps and Ds
respectively. For each request r ∈ Rs transferred at a transfer point
τ ∈ T , this point is split into an inbound transfer vertex t−τ ,r , where
the request gets off the vehicle, and an outbound transfer vertex
t+τ ,r , where the request gets in another vehicle. The sets of inbound
and outbound transfer vertices used in s are denoted by T−

s and T+
s

respectively. A partial solution of the PDPT can be associated with
a precedence graph, defined below.

Definition 1 (Precedence Graph). The precedence graph associated
with a solution s of the PDPT is defined by Gs = (Vs, As), where

Vs = Ps ∪ Ds ∪ T−

s ∪ T+

s ∪ {o} ∪ {o′
}

and As contains arcs (u, v) such that v = σ(u) or u and v are the
inbound and outbound transfer points of the same request.

An example of precedence graph is represented in Fig. 1 that
models a partial solution with two routes and five requests. In
this example, requests 1 and 2 are transferred at points τ and τ ′

respectively. This is modeled by four vertices: t−τ ,1, t
+

τ ,1, t
−

τ ′,2 and
t+
τ ′,2.

A schedule on Gs defines a service time hi for each vertex i ∈ Vs.
The schedule is feasible if the temporal constraints of the PDPT
are satisfied for s. As stated before, in this paper we consider the
vertices to be scheduled as early as possible and we denote by wi
the waiting time at vertex i ∈ Vs.

Let r ∈ R \ Rs be a request to insert in this partial solution.
Inserting r in s at a given position consists of inserting the
corresponding vertices and arcs in the precedence graph Gs. This
is feasible if the new solution resulting from this insertion has a
feasible schedule.

A request r can be inserted without transfer or through a
specified transfer point τ . As inserting without transfer is similar
to and simpler than inserting with transfers, we provide the
feasibility condition for the latter case only. Therefore we consider
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