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a b s t r a c t

In this paper we discuss problems with quadratic objective function, one or two quadratic constraints,
and, possibly, some additional linear constraints. In particular, we consider cases where the Hessian of
the quadratic functions are simultaneously diagonalizable, so that the objective and constraint functions
can all be converted into separable functions. We give conditions under which a simple convex relaxation
of these problems returns their optimal values.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we discuss simple convex relaxations for some
quadratic programming problems.Wewill first consider problems
with a quadratic objective function and two quadratic constraints

min
1
2
xTQ0x + qT

0x

1
2
xTQ1x + qT

1x ≤ u

1
2
xTQ2x + qT

2x ≤ v.

(1)

Later on we will also discuss cases with a single quadratic con-
straint but additional linear constraints. Problem (1) is, in general, a
difficult one, although some subclasses are polynomially solvable.
For instance, in [14] it is shown that a semidefinite relaxation al-
lows to solve it when qi = 0, i = 0, 1, 2, i.e., when we have no
linear term. In [2] the case of two-sided indefinite quadratic con-
straints is shown to be solvable in polynomial time under a suitable
assumption. This case is also discussed in [10]. Approximation re-
sults for the case with an arbitrary number of quadratic equality
constraints with a diagonal Hessian and no linear terms, and with
additional bound constraints, are discussed in [13]. Theorems of
the alternative for inequality systems with two or three quadratic
inequalities are discussed in [8].
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In the recent paper [1], the case where the three matrices Qi, i =

0, 1, 2, are simultaneously diagonalizable (SD in what follows) is
considered. This means that there exists a nonsingular matrix S
such that

STQiS = Di, i = 0, 1, 2,

where eachmatrixDi, i = 0, 1, 2, is diagonal. Cases of SDmatrices,
taken from [1], include:

Qj = O for some j ∈ {0, 1, 2},
Qk,Qh, h, k ∈ {0, 1, 2}, h, k ≠ j, h ≠ k, are SD

(2)

Qj = I for some j ∈ {0, 1, 2},
Qk,Qh, h, k ∈ {0, 1, 2}, h, k ≠ j, h ≠ k, commute

(3)

Qh = −Qk, h, k ∈ {0, 1, 2}, h ≠ k,
Qj,Qh, j ≠ h, k, are SD.

(4)

Notice that here and in what follows O denotes the null matrix.
Under the assumption that the three matrices Qi, i = 0, 1, 2, are
SD, problem (1) can be rewritten as follows, where the objective
and constraint functions are all separable

min
1
2

n
i=1

qiy2i +

n
i=1

ciyi

1
2

n
i=1

ηiy2i +

n
i=1

diyi ≤ u

1
2

n
i=1

γiy2i +

n
i=1

biyi ≤ v.

(5)
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In what follows we will assume that di = 0, i = 1, . . . , n. Note
that this can always be made true if ηi ≠ 0. Indeed, in this case we
have

ηiy2i + diyi = ηiy2i + diyi +
d2i
4ηi

−
d2i
4ηi

=
1
2ηi

(2ηiyi + di)2 −
d2i
4ηi

,

so that, after the change of variable y′

i = 2ηiyi + di, we have no
linear term involving y′

i in the constraint, i.e., we can set di = 0.
We do not discuss in what follows the case when ηi = 0, di ≠ 0,
since it can be dealt with in a completely analogous way.
Now, after introducing the variables zi, i = 1, . . . , n, problem (5),
with di = 0, i = 1, . . . , n, can be rewritten as

min
n

i=1

qizi +
n

i=1

ciyi

n
i=1

ηizi ≤ u

n
i=1

γizi +
n

i=1

biyi ≤ v

1
2
y2i = zi i = 1, . . . , n.

(6)

If we replace = with ≤ in the last constraints, we are led to the
following relaxation of (5):

min
n

i=1

qizi +
n

i=1

ciyi

n
i=1

ηizi ≤ u

n
i=1

γizi +
n

i=1

biyi ≤ v

1
2
y2i ≤ zi i = 1, . . . , n.

(7)

Throughout the paper wewill assume that (7) admits a strictly fea-
sible solution, i.e., Slater’s condition holds for this convex problem.
In [1] cases where the optimal values of (7) and (5) are equal are
discussed. In this paper we rework and, in some cases, extend the
results in [1]. The paper is structured as follows. In Section 2wedis-
cuss the case of a single quadratic constraint and we re-derive in a
simpler way the result in [1] for this case. In Section 3 we discuss
the case of two quadratic constraints and we derive conditions un-
derwhich the optimal values of (7) and (5) are equal, which extend
those presented in [1]. Finally, in Section 4we discuss the casewith
a single trust-region constraint and additional linear constraints.
In particular, we focus our attention on the case of two additional
linear constraints, which has recently received some attention, see
[4,5,14].

Applications of the problems discussed in this paper can be
found, e.g., in [1]. In particular, Remark 1 of that paper lists many
applications for the case with a single quadratic constraint, while
Section 3 extensively discusses many applications for the case
of two constraints, like, e.g., the robust formulation of convex
quadratic inequalities in presence of ellipsoidal implementation
errors. In addition, we observe that: (i) the case of a single con-
straint includes the well known trust region problem where we
additionally have Q1 = I and q1 = 0 (we refer, e.g., to [9] for a dis-
cussion of this problem and some of its generalizations); (ii) the
case of two quadratic constraints arises as a subproblem to be
solved at each iteration of a trust region algorithm for equality
constrained nonlinear problems (see, e.g., [7]); (iii) the case of a
quadratic constraint and additional linear constraints arises as a
subproblem to be solved at each iteration of a further trust region
algorithm for constrained nonlinear problems (see, e.g., [6,12]).

2. The case of a single constraint

The case of a single constraint is a special case of (1) where
Q2 = O, q2 = 0, v = 0. In view of (2)we only need to require that
Q0 and Q1 are SD. After diagonalization, the corresponding relaxed
problem is

min
n

i=1

qizi +
n

i=1

ciyi

n
i=1

ηizi ≤ u

1
2
y2i ≤ zi i = 1, . . . , n.

(8)

In [1] the following assumption, which removes cases where the
problem is unbounded from below, is introduced.

Assumption 2.1. There does not exist any i ∈ {1, . . . , n} such that
qi, ηi ≤ 0 with at least one strict inequality.

In [1] it is proved that the optimal value of the relaxation is always
equal to the optimal value of the original problem. The result is
proved as follows. Let (y∗

i , z
∗

i ), i = 1, . . . , n, be an optimal solu-
tion of (8). Let

J∗ =


i : z∗

i >
1
2


y∗

i

2
.

If J∗ = ∅, then it obviously holds that the optimal value of the re-
laxed problem is equal to that of the original one. In case J∗ ≠ ∅,
in [1] it is shown how to build a new optimal solution of (8) for
which J∗ = ∅. In this section we offer a simplified proof of the
result in [1] and prove that, in fact, under very mild assumptions,
J∗ = ∅ always holds. To see this, first we derive the KKT conditions
for (8), which, under the assumption that Slater’s condition holds,
allow to compute optimal solutions of this convex problem. The
KKT conditions are
qi + µηi − νi = 0 i = 1, . . . , n
ci + νiyi = 0 i = 1, . . . , n
n

i=1

ηizi ≤ u

1
2
y2i ≤ zi i = 1, . . . , n

µ


n

i=1

ηizi − u


= 0

νi


1
2
y2i − zi


= 0 i = 1, . . . , n

µ, νi ≥ 0 i = 1, . . . , n,

whereµ is the Lagrangemultiplier of the constraint
n

i=1 ηizi ≤ u,
while νi, i = 1, . . . , n, are the Lagrange multipliers of the con-
straints 1

2y
2
i ≤ zi. Now, assume that i ∈ J∗. Then, ν∗

i = 0, which can
only hold if ci = 0. Thus, we are able to prove the following result.

Theorem 2.1. There always exists an optimal solution of (8) such
that J∗ = ∅.
Proof. If ci ≠ 0 ∀i ∈ {1, . . . , n}, then the proof immediately fol-
lows from the discussion above. A closer inspection of (8) shows
that, when ci = 0 for some i, then yi only appears in the constraint
1
2y

2
i ≤ zi, and we can always restrict the attention to optimal solu-

tions where equality holds in such constraint. �

3. The case of two (quadratic) constraints

When we have two constraints, we cannot always guarantee
that the optimal value of the relaxed problem (7) is equal to
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