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a b s t r a c t

We address the design problem of a reliable network. Previous work assumes that link failures are in-
dependent. We discuss the impact of dropping this assumption. We show that under a common-cause
failure model, dependencies between failures can affect the optimal design. We also provide an integer-
programming formulation to solve this problem. Furthermore, we discuss how the dependence between
the links that participate in the solution and those that do not can be handled. Other dependency models
are discussed as well.
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1. Problem description

The topological design of reliable telecommunication networks
has been deeply studied throughout the last 30 years. The problem
can be stated as follows: given a set of nodes and a set of potential
links between these nodes, we must choose a subset of links to
install such that the total cost is minimized and the reliability is
maximized. For a gooddescription of this problemand thedifferent
types of reliability requirements, we refer to [12].

The reliability of a network can be defined in different ways.
The most common measure of reliability is K-connectivity. That
is, given a set K of terminal nodes, the reliability of the network
is the probability that there exists a path from every node in K
to every other node in K . When K includes all nodes in the
network then this measure is called the all-terminal reliability and
when K is a specific pair of nodes, it is called the source-terminal
reliability (or s-t reliability). To make the computation of reliability
affordable, several simplifications over the failures in a network are
made. Themost common simplifications are as follows: (a) the link
failures are independent; (b) the nodes are perfectly reliable; and
(c) no repair is allowed. Note that even under these assumptions,
to compute the reliability of a given network is a #P-hard problem
[3,20].
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Formally, let G = (N, E) be a graph with node set N and link
set E. Let U be a random binary vector taking values in {0, 1}E , rep-
resenting which links are operational. Given U , let EU be the set of
all links that are operational; then, the observed network is given
by the graph GU = (N, EU). The K-reliability of G is defined as the
probability that GU is K-connected.

We study the following problem: given a cost ce for each e ∈ E
and a budget B, we want to select a subset of links F ⊆ E of total
cost less than or equal to the budget, such that the reliability of the
selected subnetwork is maximized:
max
F⊆E

P((N, FU) is K-connected)
e∈F

ce ≤ B.

Due to the difficulty associated with the computation of the re-
liability of a network, the only known methods to exactly solve
this problemare based in the enumeration of the possible solutions
[2,9]. This is possible only on small-sized networks and for particu-
lar cases, such aswhen all links have the sameprobability of failure.
Hence, authors have focused on different heuristics and approxi-
mation techniques. For example, using Tabu Search [11], Simulated
Annealing [19], Genetic algorithms [6,5] orNeural Networks [12,1].
These methods give approximate solutions without any guarantee
of convergence to optimality. A recent approach, proposed in [22],
employs a sample of failure event scenarios to determine the op-
timal topology. This technique, called the sample average approxi-
mation (SAA), converges to an optimal solution when the number
of samples is sufficiently large.
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However, recent studies question the neglect of the dependence
between failures. In [8], authors analyze real data from a Nor-
wegian academic network, showing that neighboring links show
significant correlation. In particular, for the design of reliable net-
works, the impact of dependent failures on the resulting reliability
is analyzed in [13], showing that the assumptionof failure indepen-
dence can produce an underestimation of the real reliability. There
are several approaches to model the failure dependence between
components, including causal failure, cascade failure and common-
cause failure. For a discussion of the tractability and scalability of
these different models, we refer the reader to [21].

In this paper, we study the topological optimization problem
under the best-established common-cause failure model [15]. In
Section 2,wepresent theMarshall–Olkin copulamodel,which sup-
ports common-cause failure dependency. In Section 3, we present
an SAA model to solve the problem, and in Section 4, we present
some extensions of the previous models to consider other depen-
dent failure models. Finally, we present a computational example
in Section 5, showing that ignoring correlation can lead to subop-
timal solutions.

2. The Marshall–Olkin copula model for common-cause fail-
ures

Common-cause failures are a subset of dependent events in
which two or more component fault states exist at the same time
and are either direct results or a shared cause [17]. These failures
arise naturally in several contexts, for example, in an overlay (vir-
tual) network that is connected through an underlying physical
network, so a failure in the physical layer could affect several com-
ponents of the overlay network. Another example is a network in
which the components share equipment that is essential for their
function. The Marshall–Olkin (MO) copula introduced in [16] is
one of the best-established models for common-cause failures. In
this model, events cause one or more components to fail simulta-
neously, but the lifetime of each link remains exponentially dis-
tributed. This model was used in [4] for evaluating the reliability
of a network using an importance sampling technique to generate
samples of correlated failures.

Formally, let G = (N, E) be a network. At time zero, we assume
that all links are operational. As time passes, links start to fail
(alone or simultaneously). Because no repair is allowed, fewer links
operate over time. For each link,we candefine the lifetimeVe that is
the instant atwhich link e fails. LetP E

0 be a collection of non-empty
subsets of E and let (WD)D∈P E

0
be a family of independent positive

random variables. The time WD represents the instant in which a
failure that affects all links in D occurs. Therefore, the lifetime of
link e is the first time that a set D containing e fails. That is,

Ve = min
D:e∈D

{WD}.

When WD’s are exponential random variables, then this cou-
pling is known as the MO copula. Note that the marginal distribu-
tion of the lifetime Ve is also exponential for all e. Let Ue(t) be the
state of link e at time t; hence, we have Ue(t) = I(Ve≤t). Let U(t) =

(Ue(t))e∈E ; then the graph GU(t) = (V , EU(t)) is the observed net-
work at time t . Becausewe are interested in a staticmodel, we take
a snapshot of the network at time 1 and evaluate the reliability at
that instant (this can also correspond to a dynamic model with a
fixed mission time). We fix the status of each link Ue := Ue(1).

Note that this is a natural extension of the independent failure
model, settingP E

0 as the collection of singleton sets, andVe as expo-
nential randomvariables of parameter log(1−pe). In this particular
case, we have independent failure probabilities between links, and
at time 1, the failure probability is pe for link e. We can also recover
the model in which the nodes and links fail independently, adding
to the previous model the collection of sets {Dn : n ∈ N} such that

Dn is the set of all links with n as an end node. In this case, if all
nodes fail independently with probability q and the links fail inde-
pendently with probability p, then the marginal probability failure
for each link is (1− p)(1− q)2, and the node failures induce a cor-
relation between adjacent links of q(1−p)

1−(1−p)(1−q)2
.

3. An integer programming model using sample average
approximations

In this section, we present an integer programming model that
considers the dependencies between links, given by anMO copula.
Thismodel is related to the ideas of [22],which is based on a sample
average approximation (SAA) of the probability that the network is
K-connected.

SAA is a popular technique for approximating the stochastic ob-
jective function. Some of the first applications of this technique ap-
peared in [10], and the approach was empirically studied in [14].
Recalling that the probability of an event is equal to the expected
value of the indicator function of the event, the basic idea is to ap-
proximate the expected value by its sampled average. That is, we
sample a set of scenarios S, andwe approximate the objective func-
tion by
P ((N, Fx) is K-connected) = E


I(N,F) is K-connected


≈

1
|S|


s∈S

I(N,F sx ) is K-connected,

where F s
x is the subgraph obtained after removing from Fx the failed

links in scenario s.
To formulate an integer programming model that uses the pre-

vious approximation, we define a binary variable ws that indicates
the event that the graph (N, F s

x) isK-connected (or not) under sce-
nario s. A K-cut is a subset M ⊆ N such that K ∩ M ≠ ∅ and
K \ M ≠ ∅. Recall that a graph G = (N, E) is K-connected if and
only if for every K-cutM the cut-set induced byM , δ(M) = {uv ∈

E : u ∈ M, v ∉ M}, is not empty. Finally, let {W s
D : D ∈ P E

0 , s ∈ S}
be a sampling of the MO copula. Then, we solve the following inte-
ger programming problem:

max

s∈S

zs (1)
e∈E

cexe ≤ B (2)
e∈δ(M)

us
e ≥ zs ∀M K-cut, ∀s ∈ S (3)

us
e ≤ xe ∀e ∈ E, ∀s ∈ S (4)

us
e ≤ 0 ∀e ∈ D, ∀s ∈ S such thatW s

D < 1 (5)
xe ∈ {0, 1} ∀e ∈ E
zs ∈ {0, 1} ∀s ∈ S
us
e ∈ {0, 1} ∀s ∈ S, ∀e ∈ E.

Binary variables xe for each link e ∈ E determine the resulting
network, where constraint (2) bounds the total cost of these links.
Variables us

e represent whether or not link e is operative under sce-
nario s. To do so, constraints (4) and (5) force us

e = 0 in the case that
link e is not chosen (xe = 0), or whether one of the copula associ-
ated to link e indicates that this link fails in scenario s (W s

D < 1).
Finally, constraint (3) verifies whether the resulting network is
K-connected under scenario s or not. To verify this, note that
binary variables zs can take a value of 1 (which is desired by the ob-
jective function), only if for every K-cut there is at least one link
operative in scenario s. Note that it is possible to eliminate vari-
ables us

e by replacing constraints (3)–(5) by


e∈δ(M) I(W s
D≥1)xe ≥ zs,

obtaining a similar model to the one presented in [22]. However,
we adhere to the model including explicitly the us

e variables be-
causewewill discuss some extensions inwhich these variables are
required in the model.
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