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a b s t r a c t

Some widely known compact extended formulations have the property that each vertex of the corre-
sponding extension polytope is projected onto a vertex of the target polytope. In this paper, we prove
that for heptagons with vertices in general position none of the minimum size extensions has this prop-
erty. Additionally, for any d ≥ 2 we construct a family of d-polytopes such that at least 1

9 of all vertices of
any of their minimum size extensions is not projected onto vertices.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The theory of extended formulations is a fast developing research
field that has connections to many other fields of mathematics.
In its core, it deals with the concept of representing polytopes
(usually having many facets or even no known linear description)
as linear projections of other polytopes (which, preferably, permit
smaller linear descriptions). Thus, polyhedral theory plays a crucial
role for extended formulations establishing a natural connection to
geometry.

Recall that a polytope is the convex hull of a finite set of points
and that every polytope can be described as the solution set of a
system of finitely many linear inequalities and equations. The size
of a polytope is the number of its facets, i.e., the minimum number
of inequalities in a linear description of the polytope. An alternative
way to represent a polytope is to write it as a projection of another
polytope. Concretely, a polytope Q ⊆ Rn is called an extension of
a polytope P ⊆ Rd if the orthogonal projection of Q on the first
d coordinates equals P . The extension complexity of a polytope P
is the minimum size of any extension for P . Here, we restrict
extensions to be polytopes, not polyhedra, as well as projections
to be orthogonal, not general affinemaps. This definition simplifies
the representation, however does not lead to loss of generality.
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As an illustration, regular hexagons (having six facets) can
be written as a projection of triangular prisms (having only five
facets); see Fig. 1. It is easy to argue that such extensions are indeed
of minimum size. Another textbook example is the d-dimensional
cross polytope, which is the convex hull of all unit vectors ei ∈ Rd

and their negatives −ei for i = 1, . . . , d. While the d-dimensional
cross polytope has 2d facets, it can bewritten as the projection onto
the x-coordinates of the polytope
(x, y) ∈ Rd

× R2d
: x =

d
i=1

λiei −

d
i=1

λd+iei,

2d
j=1

λj = 1, λj ≥ 0 ∀ j = 1, . . . , 2d

,

which is a (2d−1)-simplex (and hence has only 2d facets) and can
also be proven to be of minimum size. Note that both examples
admitminimumsize extensionswhose vertices are again projected
to vertices.

In fact, many widely known extended formulations have the
property that every vertex of the corresponding extension is
projected onto a vertex of the target polytope. See, for instance,
extended formulations for the parity polytope [8,2], the permuta-
hedron (as a projection of the Birkhoff-polytope), the cardinality
indicating polytope [5], orbitopes [3], or spanning tree polytopes
of planar graphs [7]. Although there are notmany polytopeswhose
extension complexity is known exactly, most of the mentioned
extensions have minimum size at least up to a constant factor.
Moreover, for many of these extensions there is even a one-to-one
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Fig. 1. A hexagon (shadow) as a projection of a triangular prism.

correspondence between the vertices of the extension and the ver-
tices of the target polytope. Clearly, a general extensionmight have
vertices that are not projected onto vertices. Here, let us call such
vertices to be hidden vertices. The following natural question arises:
Given a polytope P , can we always find a minimum size extension
Q of P that has no hidden vertices?

In this paper,wenegatively answer the above question. Namely,
we prove that for almost all heptagons, every minimal extension
has at least one hidden vertex. Later we extend this result and
construct a family of d-polytopes, d ≥ 2, such that at least 1

9 of
all vertices in any minimum size extension are hidden.

Thus, in this paper we show that there are polytopes for which
the minimum size of an extension without hidden vertices is
strictly bigger than their extension complexity. Consider the open
question: How big can be the difference between the minimum
size of extensions without hidden vertices and the extension
complexity? This paper demonstrates that the difference can be
at least one in the context of the above question. However, the
above question remains open and as the next step to study hidden
vertices we propose the following question: Is there a polynomial
q : R → R such that for every polytope the minimum size of its
extension without hidden vertices is at most q(s), where s is the
extension complexity of the polytope?

2. Minimum extensions of heptagons

In this section,we consider convexpolygonswith seven vertices
taken in general position. For such polygons, we prove that there
is no extension of minimum size such that every vertex of the
extension is projected onto a vertex of the polygon.

2.1. Extension complexity of heptagons

Let us briefly recall known facts about extensions of heptagons.
In 2013, Shitov [6] showed that the extension complexity of any
convex heptagon is at most 6. Further, it is easy to see that any
affine image of a polyhedron with only 5 facets has at most 6
vertices. Thus, one obtains the following theorem.

Theorem 2.1 (Shitov [6]). The extension complexity of any convex
heptagon is 6.

While Shitov’s proof is purely algebraic, independently, Padrol and
Pfeifle [4] established a geometric proof of this fact. In fact, they
showed that any convex heptagon can be written as the projection
of a 3-dimensional polytopewith 6 facets. In order to get an idea of
such a polytope, let us consider the following construction (which
is a dual interpretation of the ideas of Padrol and Pfeifle):

Let P be a convex heptagon with vertices v1, . . . , v7 in cyclic
order. For i ∈ {2, 3, 5, 6, 7} let us set wi := (vi, 0) ∈ R3. Further,
choose some numbers z1, z4 > 0 such that w1 := (v1, z1), w4 :=

(v4, z4), w2 and w3 are contained in one hyperplane and consider

Fig. 2. Example of the construction of a 3-dimensional extension Q with 6 facets
for a heptagon P .

Q ′
:= conv({w1, . . . , w7}). It can be shown [4] that (by possibly

shifting the vertices’ labels) one may assume that the convex hull
of w1, w4 and w6 forms a facet F of Q ′. In this case, remove the
defining inequality of F from an irredundant outer description
of Q ′ and obtain a 3-dimensional polytope Q with only 6 facets
whose projection is still P . For an illustration, see Fig. 2. Note that
removing the facet F results in an additional vertex that projects
into the interior of P .

In what follows, our argumentation does not rely on the con-
struction described above but only on the statement of Theo-
rem 2.1. However, the previous paragraph gives an intuition why
additional vertices may help in order to reduce the number of
facets of an extension.

2.2. Additional vertices of minimum size extensions of heptagons

In this section, we will show that most convex heptagons force
minimum size extensions to have at least one vertex that is not
projected onto a vertex. In order to avoid singular cases in which
it is possible to construct minimum size extensions without addi-
tional vertices, we only consider convex heptagons P that satisfy
the following three conditions:
1. There are no four pairwise distinct vertices u1, . . . , u4 of P such

that the lines u1u2, u3u4 are parallel.
2. There are no six pairwise distinct vertices u1, . . . , u6 of P , such

that the lines u1u2, u3u4, u5u6 have a point common to all three
of them.

3. There are no seven pairwise distinct vertices u1, . . . , u7 of P
such that the intersection points u1u2 ∩ u3u4, u2u5 ∩ u4u6 and
u3u7 ∩ u1u5 lie in the same line.

Here, a convex heptagon P is called to be in general position, if it
satisfies conditions (1)–(3). We are now ready to state our main
result:

Theorem 2.2. Let P be a convex heptagon in general position. Then
any minimum size extension of P has a vertex that is not projected
onto a vertex of P.

From now on, let us fix a convex heptagon P that is in general
position. In order to prove Theorem 2.2, let us assume, for the
sake of contradiction, that there exists a polytope Q with only six
facets such that Q is an extension of P and every vertex of Q is
projected onto a vertex of P . Towards this end, let us first formulate
two Lemmas, which we will extensively use through the whole
consideration.

Lemma 1. Let w1, . . . , w4 be four pairwise distinct vertices of Q
such that exactly one pair of them is projected onto the same vertex of
P. Then, the dimension of the affine space generated by w1, . . . , w4
equals 3.
Proof. Let us assume the contrary and let w1, . . . , w4 be such
vertices of Q that the dimension of the corresponding affine space
is at most 2. Then, the dimension of the affine space generated
by the projections of w1, . . . , w4 is at most one since it is the
projection of the affine space generated by w1, . . . , w4, while two
distinct points in this space are projected onto the same point. This
implies that the projections ofw1, . . . , w4, and thus three different
vertices of P , lie on the same line, a contradiction.
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