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1. Introduction

The classic single-period, single-item inventory problem with
random demand, commonly referred to as the newsboy or
newsvendor problem, plays a central role at the conceptual foun-
dations of stochastic inventory theory with vast applications in
revenue management and supply chain management [18,4,19].
The problem, formulated and solved by Arrow et al. [2] and Morse
and Kimball [14], is as follows. Each day the proverbial newsboy
has to decide how many newspapers to stock before observing de-
mand. He purchases them from a publisher at a unit cost ¢ and
sells them at a price p to customers whose uncertain demand is de-
scribed by a random variable X. Any unsold items are recycled with
a unit salvage value s; to avoid trivialities, p > ¢ > s is assumed.
The problem is to find the order (purchase) quantity that maxi-
mizes the expected profit. Thus, the decision maker is assumed to
be risk-neutral; the models in which he/she is risk-averse, risk-
seeking, or uses a maximum entropy approach are proposed in
[22,8,1]. Numerous extensions of the newsboy problem were re-
viewed in [19,13].

Since the demand distribution can be hardly known in practice,
Scarf [20] was the first to address the distribution-free newsboy
problem, that is, the newsboy problem under incomplete prob-
abilistic information. He assumed that merely the mean u© =
E(X) and the variance ¢? = Var(X) are known, and proved that
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whenever r > priwsy
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n+ S /i) maximizes the minimum expected profit over all

where r = g, the order quantity ¢* =

distributions with given p and o2. Thus, Scarfs quantity is the
worst-case order quantity. The contribution of Scarf, who is one
of the pioneers in inventory theory, was recognized in the 50th
anniversary issue of the journal Operations Research [21]. The proof
of Scarf’s formula was simplified and its economic interpretations
provided [6]. It was also empirically demonstrated that if the de-
mand distribution is characterized by i and o2, then Scarf’s order
quantity performs quite well whenever the demand distribution is
assumed to be approximately normal [6,7].

The problem of maximizing the expected profit under the best-
case demand scenario has been much less examined [6,23,9].
However, it is more trivial because the best-case order quantity is
oftenq* = p.

Recently, closed form formulas for the worst-case and best-
case order quantities were found when the demand distribution
has known support [a, b], mean u, and variance o2 [11]. The
main purpose of this paper is to derive these two quantities un-
der the assumption that the distribution is non-skewed, symmet-
ric, or symmetric and unimodal, with given support, mean, and
variance.

The paper is organized as follows. In Section 2 we formulate the
problem under study, and in Section 3 we present the theoretical
background for seeking the order quantities under the worst-case
and best case scenarios. These quantities are listed in Section 4.
Final remarks, including future research and some extensions of
the obtained results, are made in Section 5.
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2. Problem formulation

If q is an order quantity and X denotes the random demand,
min(X, q) represents the demand that is met and g — min(X, q) is
the salvage amount. Consequently, the expected profit is expressed
by

7 (q) = pE [min (X, )] + sE [q — min (X, q)] — cq
=((@—s)EminX,q)] - (c—s)q

= (I?—S)/oo min (x, q) dF (x) — (c =) q,

where F is the cdf (cumulative distribution function) of X.
Since for every cdf F (defined as a right-continuous function)
with a finite mean

3+|:/Oomin(x,q)dF(x)] aJr[q—/q F(x)dx]
3(] —0 3CI —00

the first right derivative of 7 (q) is %—; [r(@l=@—c)—@—>5)
F(q), and the optimal order quantity g* is typically defined as the
smallest q such that F(q) > r. Note that ¢* = F~' (r) whenever X
is a continuous random variable.

Suppose only a partial information about the cdf F of X is avail-
able in the sense that F € ¥, where ¥ is a non-empty family of
cdfs representing some distributions bounded on [a, b]. For every
q € [a,b], let L(q) and U(q) be sharp lower and upper bounds
on the expected met demand E[min (X, q)], that is, there exist
ﬂi, Fq € ¥ such that

b b
L(@) = [ min x.9)dE (0 = min [ min x. 9 dF ),

b b
U(q) = / min (x, q)dfq(x)zlg]afx f min (x, q) dF (x).

The bounds L(q) and U(q) lead to the following sharp lower and
upper bounds on the expected profit 7 (q):

(@ =@P—-35)L(q@ —(c—s)q and
T@O=@—9U(@ —(c—9)q.

When 7 (q) and 7 (q) are maximized over g, one can find the
worst-case and best-case order quantities denoted by g* and q*,
respectively. Consequently, forany F € #, the corresponding max-
imum expected profit 77 (¢*) satisfies 7 (¢*) < 7 (¢*) <7 (T°).

In this paper we assume that the meandemandis u© = (a+b)/2,
that is, the allowable distributions are on the interval [u —d, nw+d],
where 0 < d < . Under this assumption, we consider the cases
when these distributions are additionally non-skewed, symmetric,
and symmetric and unimodal.

3. Theoretical background

As it was observed in the previous section, for a given non-
empty family & of cdfs on [a, b], to find the worst-case and best-
case order quantities, ¢* and g*, it suffices to identify sharp bounds,
L(q) and U(q), on the expected met demand E[min (X, q)]. If L(q)
(U(q))is concave,thenF (q) = 1— a%(q) (F(q)=1— W) is the
infimum (supremum) of ¥ with respect to the increasing concave
order, and g* (g*) is the smallest g such that F(q) > r (F(q) >
r)[11]. Recall here that F is said to be smaller than G in the sense of
this order, written F <, G, if for every non-decreasing and concave

function ¢(x), fab e (X)dF(x) < fab @ (x) dG(x). Furthermore,

F <icy Gis equivalent to fab min(x, q)dF (x) < fab min(x, q)dG(x) for
every q € [a, b]. A cdf F (F) is called the infimum (supremum)
of F with respect to <ic, if F (F) is the greatest (smallest) cdf,
not necessarily in &, such that F <ic, F (F<ico F) for all F € F
[15].

Let 8, and U, denote the cdfs of the one-point (degenerate)
distribution at x, and the uniform distribution on [ — X, i + x],
respectively. It is well-known that if # represents all distributions
(unimodal distributions) on [u — d, jt + d], then 38,4 + 38,44
(U,54) and §,, are the minimum and maximum of ¥ . Since %Su_d—{—

38,+a and Uyzq have variances d” and d?/3, respectively, the
following is true; see e.g. [5,3].

Lemma 1. Let X have a distribution on [u — d, ;u + d]. Then its
variance o? satisfies 0? < d?, and the bound d* remains sharp
when the distribution is symmetric. If it is also unimodal, then
0% < d? /3.

Lemma 1 will clarify the assumptions imposed on the variance
in the remainder of this section.

First, we assume that the demand distributions on [u—d, nw+d]
(with mean 4) are non-skewed, that is, E[(X — )] = 0. The
next lemma can be deduced from Theorem 2.1 in the excellent
monograph of Karlin and Studden [12, p. 472]; see also Theorem
3.1[17] and Theorem 2 [11].

Lemma 2. Let X have a non-skewed distribution on [ — d, u + d]
with variance 6> < d?. Then for every q € [ — d, i + d], the
sharp lower and upper bounds, L(q) and U(q), on E[min (X, q)] can
be defined as follows:

L(q) = mcax [Co + pncy + (,uz + 02) c + (,u3 + 3pL02) C3]

S.t.Co + C1x + Cox° 4+ c3x> < min(x, q) forx € [ —d, p+dl;
U(q) = min[co + pcr + (4* +0%) 2 + (1° + 3p07) c3]
S.t.Co+ Cix + x? + c3x° > min(x, q) forx € [ —d, u+d].
Theorem 1. Let the cdf of X belong to the family ¥ representing
the non-skewed distributions on [u — d, u + d] with variance

0% < d?. Then the sharp lower and upper bounds on E[min (X, q)]
are:

. (d—|p—qhyo?* _ 3d
Lq) — - 7 — < —q| <d,
min (i, q) Y7 if s <ln—ql =
min oy — ET B =D (@ = %) ?
U™ T d) (422 — 202 + do?)
L(g) = 5
i d <| |<3d
d+2u — p—ar=-g
q+p—o . o?
- —ql <
5 if ql_d+20,

wherez = y* — d,

1 1
— [Bl + B, + 2 (B; — By) cos <§arcos(l + R))}

6d
" i —q|>e—d,
. 1f lu—ql > 1
5d [B] + B, + 2 (By — By) cosh <§arcosh(1 + R))]
otherwise,

By =3d(u—ql+d), By =2(d*+0?,
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