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a b s t r a c t

We consider risk-averse formulations of multistage stochastic linear programs. For these formulations,
based on convex combinations of spectral risk measures, risk-averse dynamic programming equations
can be written. As a result, the Stochastic Dual Dynamic Programming (SDDP) algorithm can be used to
obtain approximations of the corresponding risk-averse recourse functions. This allows us to define a
risk-averse nonanticipative feasible policy for the stochastic linear program. Formulas for the cuts that
approximate the recourse functions are given. In particular, we show that some cut coefficients have
analytic formulas.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Multistage stochastic programs play a central role when devel-
oping optimization models under stochastic uncertainty in engi-
neering, transportation, finance, and energy. Furthermore, since
measuring, bounding, or minimizing the risk of decisions becomes
more andmore important in applications, risk-averse formulations
of such optimization models are needed and have to be solved.
Several risk-averse model variants allow for a reformulation as
a classical multistage model, as in [6,8] and the present paper.
From a mathematical point of view, multistage stochastic opti-
mizationmethods represent infinite-dimensionalmodels in spaces
of random vectors satisfying certain moment conditions and con-
tain high-dimensional integrals. Hence, their numerical solution is
a challenging task. Each solution approach consists at least of two
ingredients: (i) numerical integration methods for computing the
expectation functionals and (ii) algorithms for solving the resulting
finite-dimensional optimization models.

The favorite approach for (i) is to generate possible scenarios
(i.e., realizations) of the random vector involved and to use them
as ‘grid points’ for the numerical integration. Scenario generation
can be done by Monte Carlo, quasi-Monte Carlo, or optimal
quantization methods (see [5,18] for overviews and [3, Part III] for
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further information). Scenarios for multistage stochastic programs
have to be tree structured to model the increasing chain of σ -
fields. Existing stability and convergence results such as those
in [11,10,12,21] provide approaches and conditions implying the
convergence of such schemes, in particular, for the deterministic
first-stage solutions. Hence, they justify rolling horizon approaches
based on repeated solving of multistage models; see [9], for
instance.

The algorithms employed for (ii) depend on structural proper-
ties of the basic optimization model and on the inherent structure
induced by the scenario tree approximation (see the survey [19] on
decomposition methods).

Some algorithmic approaches incorporate the scenario gener-
ation method (i) as an algorithmic step of the solution method.
Such approaches are, for example, stochastic decompositionmeth-
ods for multistage models (see [20]), approximate dynamic pro-
gramming (see [17]), and Stochastic Dual Dynamic Programming
(SDDP), initiated in [13], revisited in [16,22], and also studied in
the present paper.

We consider risk-averse formulations of multistage stochastic
linear programs of the form

inf
x1,...,xT

d⊤1 x1 + θ1E


T

t=2

d⊤t xt


+

T
t=2

θtρφ


−

t
k=2

d⊤k xk


Ctxt = ξt − Dtxt−1,
xt ≥ 0, xt is Ft-measurable, t = 1, . . . , T ,

(1)
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where x0 is given, parameters dt , Ct ,Dt are deterministic, (ξt)Tt=1
is a stochastic process, Ft is the sigma-algebra Ft := σ(ξj, j ≤ t),
(θt)

T
t=1 are nonnegative weights summing to 1, and ρφ is a spectral

risk measure [1] or distortion risk measure [14,15] depending on
a risk spectrum φ ∈ L1([0, 1]). In the above formulation, we
have assumed that the (one-period) spectral risk measure takes as
argument a random income and that the trajectory of the process is
known until the first stage. We assume relatively complete recourse
for (1), which means that, for any feasible sequence of decisions
(x1, . . . , xt) to any t-stage scenario (ξ1, ξ2, . . . , ξt), there exists a
sequence of feasible decisions (xt+1, . . . , xT ) with probability 1. A
non-risk-averse model amounts to taking θ1 = 1 and θt = 0
for t = 2, . . . , T . A more general risk-averse formulation for
multistage stochastic programs is considered in [8]. For these
models, dynamic programming (DP) equations are written in [8]
and an SDDP algorithm is detailed to obtain approximations of the
corresponding recourse functions in the form of cuts. The main
contribution of this paper is to provide analytic formulas for some
cut coefficients, independent of the sampled scenarios, that can be
useful for implementation. We also specialize the SDDP algorithm
and especially the computation of the cuts for the particular risk-
averse model (1).

We start by setting down some notation.

• e will denote a column vector of all 1s;
• for x, y ∈ Rn, the vector x ◦ y ∈ Rn is defined by (x ◦ y)(i) =

x(i)y(i), i = 1, . . . , n;
• for x ∈ Rn, the vector x+ ∈ Rn is defined by x+(i) =

max(x(i), 0), i = 1, . . . , n;
• the available history of the process at stage t is denoted by

ξ[t] := (ξj, j ≤ t);
• for vectors x1, . . . , xn, the notation xn1:n2 stands for the

concatenation (xn1 , xn1+1, . . . , xn2 ) for 1 ≤ n1 ≤ n2 ≤ n;
• δij is the Kronecker delta defined for i, j integers by δij = 1 if

i = j and 0 otherwise.

2. Risk-averse dynamic programming

Let FZ (x) = P(Z ≤ x) be the cumulative distribution function of
an essentially bounded random variable Z , and let F←Z (p) = inf{x :
FZ (x) ≥ p} be the generalized inverse of FZ . Given a risk spectrum
φ ∈ L1([0, 1]), the spectral risk measure ρφ generated by φ is (see
[1]):

ρφ(Z) = −

 1

0
F←Z (p)φ(p)dp.

Spectral risk measures have been used in various applications
(portfolio selection by Acerbi and Simonetti [2]; insurance by
Cotter and Dowd [4]). The conditional value-at-risk (CVaR) of level
0 < ε < 1, denoted by CVaRε , is a particular spectral risk measure
obtained taking φ(u) = 1

ε
10≤u<ε (see Acerbi [1]).

In what follows, we consider more generally a piecewise
constant risk function φ(·) with J jumps at 0 < p1 < p2 < · · · <
pJ < 1. We set 1φk = φ(p+k )−φ(p−k ) = φ(pk)−φ(pk−1), for k =
1, . . . , J , with p0 = 0, and we assume that

(i) φ(·) is positive, (ii) 1φk < 0, k = 1, . . . , J,

(iii)
 1

0
φ(u)du = 1.

In this context, ρφ can be expressed as a linear combination
of conditional value-at-risk measures. With this choice of risk
functionφ, the spectral riskmeasure ρφ(Z) can be expressed as the
optimal value of a linear program; see Acerbi and Simonetti [2]:

ρφ(Z) = inf
w∈RJ

J
k=1

1φk[pkwk − E[wk − Z]+] − φ(1)E[Z]. (2)

Using this formulation for ρφ , dynamic programming equations
are given in [8] for risk-averse formulation (1). More precisely,
problem (1) can be expressed as

inf
x1, w2:T

d⊤1 x1 +
T

t=2

θtc⊤1 wt +Q2(x1, ξ[1], z1, w2, . . . , wT ),

C1x1 = ξ1 − D1x0, x1 ≥ 0, wt ∈ RJ , t = 2, . . . , T ,

(3)

with z1 = 0, vector c1 = 1φ ◦ p, and where, for t = 2, . . . , T ,

Qt(xt−1, ξ[t−1], zt−1, wt:T )

= Eξt |ξ[t−1]


inf
xt ,zt

ft(zt , wt)+Qt+1(xt , ξ[t], zt , wt+1:T )

zt = zt−1 − d⊤t xt , Ctxt = ξt − Dtxt−1, xt ≥ 0


, (4)

with

ft(zt , wt) = −(δtT θ1 + φ(1)θt)zt − θt 1φ⊤(wt − zte)+, (5)

and QT+1 ≡ 0. Function Qt+1 represents at stage t a cost-to-
go or recourse function which is risk averse. As shown in the
next section, it can be approximated by cutting planes by some
polyhedral function Qt+1. These approximate recourse functions
are useful for defining a feasible approximate policy obtained by
solving

inf
xt ,zt

ft(zt , wt)+Qt+1(xt , ξ[t], zt , wt+1:T )

Ctxt = ξt − Dtxt−1, xt ≥ 0, zt = zt−1 − d⊤t xt ,
(6)

at stage t = 2, . . . , T , knowing xt−1, zt−1, first-stage decision
variables wt:T , and ξt . First-stage decision variables x1 and w2:T are
the solution to (3) with Q2 replaced by the approximation Q2.

3. Algorithmic issues

The DP equations (3)–(4) make possible the use of decompo-
sition algorithms such as SDDP to obtain approximations of the
corresponding recourse functions. When applied to DP equations
(3)–(4), the convergence of this algorithm is proved in [8] under
the following assumptions.
(A1) The supports of the distributions of ξ1, . . . , ξT are discrete

and finite.
(A2) Process (ξt) is interstage independent.
(A3) For t = 1, . . . , T , for any feasible xt−1, and for any realization

ξ̃t of ξt , the set

{xt : xt ≥ 0, Ctxt = ξ̃t − Dtxt−1}

is bounded and nonempty.

In what follows, we assume that Assumptions (A1)–(A3) hold. In
particular, we denote the realizations of ξt by ξ i

t , i = 1, . . . , qt <

+∞, and set p(t, i) = P(ξt = ξ i
t ).

Since the supports of the distributions of the random vectors
ξ2, . . . , ξT are discrete and finite, optimization problem (1) is finite
dimensional, and the evolution of the uncertain parameters over
the optimization period can be represented by a scenario tree
having a finite number of scenarios that can happen in the future
for ξ2, . . . , ξT . The root node of the scenario tree corresponds to the
first time step with ξ1 deterministic.

For a given stage t , to each node of the scenario tree there
corresponds an history ξ[t]. The children nodes of a node at stage
t ≥ 1 are the nodes that can happen at stage t + 1 if we are at
this node at t . A sampled scenario (ξ1, . . . , ξT ) corresponds to a
particular succession of nodes such that ξt is a possible value for
the process at t and ξt+1 is a child of ξt . A given node in the tree
at stage t is identified with a scenario (ξ1, . . . , ξt) going from the
root node to this node.

In this context, the SDDP algorithm builds polyhedral lower
bounding approximations Qt of Qt for t = 2, . . . , T + 1. Each
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