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a b s t r a c t

This paper deals with the single-item capacitated lot sizing problemwith concave production and storage
costs, considering minimum order quantity and dynamic time windows. The frequency constraints
on the production lots are modeled by dynamic time windows. Between two consecutive production
lots, there are at least Q periods and at most R periods. This paper presents an optimal algorithm in
O((T − Q )2 (R−Q )T4

Q 3 ),which is bounded by O(T 7).
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with a generalization of the single-item
capacitated lot sizing problem (CLSP) with fixed capacity. The
CLSP consists in satisfying a demand at each time period t over
a planning horizon T . The demand is satisfied from stock or by
production. Costs incur for each item produced and also when
an item is stored between two consecutive periods. A fixed
maximumproduction capacity (U)must be respected. Theproblem
considered in this paper contains a minimum order quantity
constraint (MOQ). This constraint imposes that if an item is
produced at a given period, the quantity must be greater than or
equal to a minimum level L. The U and L values are constant over
the T periods. This problem also includes dynamic time windows
(DTW). Between two consecutive production lots, there are at least
Q periods and at most R periods.

In a long term partnership, a stability contract can be estab-
lished between a supplier and a retailer with the objective of sta-
bilizing their deliveries. This can lead to a number of advantages
for the supplier as detailed in Hellion et al. [11]. Hellion et al. [11]

∗ Corresponding author.
E-mail addresses: bertrand.hellion@gmail.com, bhellion@azap.com (B. Hellion).

show that the implementation of a stability contract increases the
retailer’s storage costs, which can be equilibrated by a price dis-
count on the behalf of the supplier. The overall estimated profit for
the whole supply chain is shown to be proportional to the hardness of
the stability contracts used.If a stability contract is established be-
tween the supplier and the retailer (which consists in finding the
best values for U, L,Q and R), tactical planning must take these
values into account as constraints in the optimization of supply. In
particular, the retailer can optimize its planning by solving a single-
item lot sizing problemwith capacities (U), minimum order quan-
tities (MOQ or L) and dynamic time windows (Q , R). This problem
is noted as CLSP–MOQ–DTW in the following.

The single-item capacitated lot sizing problem is known to be
NP-Hard [3]. However, some cases are polynomially solvable. This
is the case when the capacity is fixed over the T periods. Florian
and Klein [8] considered a case where production and holding
cost functions are concave. They proposed an exact method with
a time complexity in O(T 4). Later van Hoesel and Wagelmans [20]
improved the complexity of the algorithm in O(T 3) when the
holding costs are linear. A complete survey on the single-item lot
sizing problem can be found in [4].

Recentlyminimumorder quantity (MOQ) constraints have been
developed. These constraints deal with the production level that
must be at least the MOQ if the production is to be started. The

http://dx.doi.org/10.1016/j.orl.2014.08.010
0167-6377/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2014.08.010
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2014.08.010&domain=pdf
mailto:bertrand.hellion@gmail.com
mailto:bhellion@azap.com
http://dx.doi.org/10.1016/j.orl.2014.08.010


B. Hellion et al. / Operations Research Letters 42 (2014) 500–504 501

CLSP–MOQ has been shown relevant in many industrial contexts,
for example Lee [13] has studied an industrial problem where a
manufacturer imposes a minimum order quantity to its supplier.
Furthermore, Porras and Dekker [17] have worked on an industrial
case where the producer imposes minimum order quantities
(MOQ) to produce the items. Zhou et al. [22] have analyzed a class
of simple heuristic policies to control stochastic inventory systems
with MOQ constraints. They also developed insights into the
impact of MOQ constraints on repeatedly ordered items to fit in an
industrial context. Okhrin and Richter [16] develop the first exact
polynomial time algorithm for this problem. They solved a special
case of the problem in which the unit production cost is constant
over the whole horizon and then can be discarded. Furthermore,
they assumed that the holding costs are also constant over the
T periods, with these restrictions they derived a polynomial time
algorithm in O(T 3). Li et al. [15] studied the single item lot sizing
problemwith lower bounds and described a polynomial algorithm
in O(T 7) to solve the special case with concave production and
storage cost function. Later Hellion et al. [9,10] developed an
optimal O(T 6) polynomial time algorithm to solve the CLSP–MOQ
with concave costs functions, improving Li et al. [15] algorithm.
Hellion et al. [9,10] also provide a computational experiment to
underline the practical complexity of their algorithm.

The production capacity and MOQ constraints were originally
motivated by industrial needs. Considering a retailer ordering from
a single supplier, these constraints additionally give the supplier
a way to forecast future orders. However, these constraints only
affect the quantity of the orders, and both the supplier and
the retailer lack temporal information. To ensure a long-term
partnership, actors must guarantee a certain amount of supplied
components and regular orders. The time interval between two
orders must be in a given time window [11].

In the existing literature, time windows have been introduced
with several definitions. Dauzère-Pérès et al. [7] introduce
production time windows. Each demand di (with i = 1, 2 . . . n) is
defined by a time window [Ei, Li] during which a replenishment
for the demand must occur. At the end of the time window
the produced quantity is dispatched to satisfied the demand.
Time windows can be used to model perishability (whereby
products cannot be stored indefinitely in a warehouse). The initial
model is extended to the capacitated multi-item problem by
Brahimi et al. [4]. Recently, Absi et al. [1] studied two production
time window problems, considering lost sales or backlogs, using
dynamic programming. Hwang [12] proposed an O(T 5) algorithm
for production time windows and concave production costs. van
den Heuvel [19] showed that the formulations with production
time windows are equivalent to other models: lot sizing with
manufacturing options, lot sizing with cumulative capacities and
lot sizing with inventory bounds.

On the other hand, Lee et al. [14] present delivery timewindows
(also called grace period). In this model, demand is not defined
with a single period (dt ) but by an interval dt1<t2 with t1, t2 ∈

T 2. This demand must be satisfied in any period between t1
and t2. Later, Akbalik and Penz [2] used a similar definition to
compare just-in-time and time windows policies. These two time
window definitions were studied by Wolsey [21], he proposed
valid inequalities and convex hulls.

However, these time window definitions above do not guaran-
tee regular orders. Hellion et al. [11] recently presented a new time
windows definition in which actors have to agree on a minimum
and a maximum number of periods between two orders. Since an
order is dependent on the period where the last order occurred,
these timewindows are dynamic (called DTW as already defined).

In this paper, we extend Hellion et al.’s algorithm [9,10] to the
problem with dynamic time windows. The paper is organized as
follows: Section 2 describes the problem and introduces the nota-
tions. Section 3 presents the necessary definitions and properties
to give a polynomial algorithm, and the algorithm. Finally, conclud-
ing remarks and perspectives are given in Section 4.

Fig. 1. An example of dynamic time window with Q = 2 and R = 4.

2. Problem description and notations

2.1. Description

The single item lot sizing problem consists of satisfying the de-
mands dt of a product at each period t over T consecutive periods.
A demand dt ∈ Z+ may be satisfied by the production of an item
at period t (Xt ) and/or from inventory (I) available at the end of the
period t − 1 (It−1). Backlogs are not allowed. The inventory level
at the end of a period t is denoted It . It is assumed without loss of
generality that there is no inventory at the beginning of the first pe-
riod. The problem is to determine the amount Xt to be produced at
each period, satisfying the demands and minimizing the total cost.

A constant capacity U constrains the production at each period.
Aminimum order quantity (MOQ) L also constrains the production
level. Each subsequent production level is also constrained by a
dynamic time window (DTW). There are at least Q and at most R
periods between two consecutive production lots.

Fig. 1 illustrates the dynamic timewindow forQ = 2 and R = 4.
In the example, a lot is produced in period t . Since Q = 2, the
following lot cannot be produced at either at period t+1 or at t+2.
Since R = 4, at least a lotmust be produced in the next five periods.
Thereafter, the next lot must be produced between periods t + 3
(t + Q + 1) and t + 5 (t + R + 1) included. Consequently, in each
interval of length 3 atmost one lotmust be produced. Furthermore,
in each interval of length 5, at least one lot must be produced. Note
that if Q = R one lot must be produced every Q + 1 periods. If
Q = R = 0, one lot must be produced every period.

The production cost is a concave function of the quantity
produced pt(Xt) and the inventory cost is a concave function of the
inventory level ht(It). Note that concave cost functionsmay include
set-up costs.

2.2. Mathematical formulation

The mathematical formulation is now presented. The decision
variables are given as follows:
• Xt : quantity of products ordered at period t .
• Yt =


1 if an order is placed at period t.
0 otherwise.

• It = inventory level at the end of a period t .

The mathematical formulation of the CLSP–MOQ–DTW is then:

Min
T

t=1

pt(Xt) +

T
t=1

ht(It) (1)

Xt + It−1 − It = dt ∀t ∈ T (2)
LYt ≤ Xt ≤ UYt ∀t ∈ T (3)
t+R
t ′=t

Yt ′ ≥ 1 ∀t ∈ {1, . . . , T − R} , (4)

t+Q
t ′=t

Yt ′ ≤ 1 ∀t ∈ {1, . . . , T − Q } (5)

Xt , It ∈ R ∀t ∈ T (6)
Yt ∈ {0, 1} ∀t ∈ T . (7)
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