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a b s t r a c t

We study an inventory system that replenishes its stock through two shipping services, of which the non-
committed shipping service can only ship up to a random capacity that is not known until shipment. By
transforming the non-convex optimization in the dynamic program to a convex optimization problem,we
show that the optimal policy for each period is determined by a quota for the non-committed shipping
and a base-stock level for the committed shipping.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This study is motivated by a retailer who replenishes its stock
through an air carrier that implements a dual-pricing mech-
anism. The air carrier, headquartered in the southern city of
Guangzhou, China, recently instituted the ‘‘committed’’ versus
‘‘non-committed’’ air shipping products for its customers. For con-
venience in what follows we shall refer to these two shipping ser-
vices as committed and non-committed shippings, respectively; and
refer to the respective orders as committed and non-committed or-
ders. The committed order is always guaranteed to ship when re-
ceived, and it is charged a higher shipping cost; the non-committed
order has a lower shipping cost, but the capacity to ship non-
committed orders is not known until all committed orders have
been received. That is, the capacity for non-committed orders is
random and that is not known to the retailer when placing its or-
der; thus a non-committed order is not guaranteed of the delivery
of the exact ordering quantity. (These air cargo shipping products
have been proven to be very successful in increasing the carrier’s
revenue. For more information on these air cargo products, see
Wu [11]). This raises the following interesting operational ques-
tion for a retailer whose inbound logistics are handled by such a
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shipping carrier: How to take advantage of the less-expensive but
non-committed shipping to minimize its total cost?

The main complication of the problem lies in the random and
unknown capacity of the non-committed shipment when the re-
tailer makes its replenishment decisions. Indeed, even for the spe-
cial case of only one (the non-committed) shipping service, it is
known that the random capacity results in an optimization prob-
lem that is not convex (see e.g., Ciarallo et al. [2], and Feng and
Shi [5]). One of the contributions of this paper is to transform the
non-convex optimization problem into a simple convex optimiza-
tion problem. This transformation allows us to easily derive the
optimal strategy for the retailer. We show that the optimal con-
trol policy for each period is determined by a quota allocated to
the non-committed shipping and a base-stock level for the com-
mitted shipping. We also study the effect of introducing the non-
committed shipping as well as the effect of a price change of the
non-committed shipping to the retailer. We prove that adding the
option of non-committed shipping always benefits the retailer, and
it leads to a reduced optimal base-stock level for the committed or-
der in each period. For ease of expositionwe assume that the data is
stationary, but all results hold truewhen the system costs, demand
distributions, etc., are time-dependent.

2. Related literature

This work is closely related to two streams of research litera-
ture. As the ordering cost for the committed shipping becomes ex-
ceedingly high, then the problem is reduced to an inventory system
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with only one supplier that has randomcapacity,which is the prob-
lem studied in Ciarallo et al. [2], and more recently, in Feng [4]. As
mentioned above, since the unknown random capacity leads to a
non-convex optimization problem, the analysis of the non-convex
objective function is the key to these studies. Ciarallo et al. [2] em-
ploy an interesting quasi-convexity analysis to show that the value
function (cost-to-go function) is convex and the optimal policy is
a base-stock type. The resulting optimization problem in Feng and
Shi [5] is also non-convex in the ordering decisions, and the authors
use a novel approach to show that the value function is convex (in
the profit maximization setting it is concave) and that there exists
a threshold for each supplier and the retailer would order only if
the starting inventory level is below the threshold, but the order-
ing quantity can be complicated. In contrast to Ciarallo et al. [2]
and Feng and Shi [5], our approach transforms the non-convex
optimization problem to a convex optimization problem, and the
transformed convex optimization problem significantly simplifies
the analysis that establishes the optimality of quota-base-stock
optimal policy and the effect of introducing the non-committed
shipping. The policy of assigning a quota to the non-committed
shipping offers managerial insight; and so is the effect of intro-
ducing the non-committed shipping that lowers the retailer’s min-
imum cost and reduces the optimal base-stock levels.

On another extreme, if the capacity of the non-committed
shipping service is deterministic, then the problem is reduced to
a periodic-review inventory system with only one supplier and
piece-wise linear convex ordering cost: the unit ordering cost is
a low number up to the fixed capacity, and a high number beyond
the capacity. This problem has also been studied by a number of
authors, and the optimal inventory control policy is characterized
by two critical numbers together with the deterministic capacity,
see e.g., Henig et al. [7], Bensoussan et al. [1], and Martinez-de-
Albeniz and Simchi-Levi [9], among others. The piece-wise cost
structure is due to capacity constraints and themodel in this paper
further allows the capacity to be unknown at the decision time.
Ourmodel is also related to the research inwhich the firm needs to
dynamically make ordering decisions from a regular supplier and
a spot market to minimize the total cost, see, e.g., Yi and Scheller-
Wolf [12] and the survey paper of Haksoz and Seshadri [6]. The
difference with this line of work is that, in the spot market there
are usually plenty of supplies while in our model, there is a finite
capacity that is not known beforehand.

3. Notations and problem setup

Consider a periodic-review inventory system of a retailer for N
periods. The first period is labeled 1, and the last period is N . The
random demands in these periodsD1,D2, . . . ,DN are independent
though not necessarily identically distributed. In this paper we
consider the case that unmet demand in each period is backlogged.
There is a discount factor α for each period for cost computation,
where α ∈ (0, 1].

Two types of shipping services, committed shipping and non-
committed shipping are available to the retailer. Committed ship-
ping promises to deliver any orders received in a period. Due to the
commitment, the carrier has taken necessary actions to secure the
capacity for these orders, including scheduling in advance, emer-
gency capacity allocation, rejecting other potential customers, and
so on, thus the retailer incurs a high unit ordering cost cH for com-
mitted shipping. On the other hand, non-committed shipping does
not guarantee to deliver the full ordering quantity. More specif-
ically, the delivery quantity of the non-committed shipping de-
pends on the realized remaining capacity in the period, say Rn,
for period n. This is due to the fact that the carrier has priority
customers that have to be satisfied first, and only when extra ca-
pacity is available after serving the priority customers shall the

non-committed orders be delivered, and for this reason, the non-
committed orders are charged at a lower price cL ≤ cH . We assume
that the capacities R1, . . . , RN are independent, which is a reason-
able assumption when the carrier has a large customer base. Thus
the remaining capacity for non-committed orders does not depend
on a small number of customers. The ordering delivery leadtimes
fromboth shipping service are equal and are assumed,without loss
of generality, to be 0. Thus, if the non-committed shipping service
does not ship the full ordering quantity, we assume that the un-
met order is canceled since the firm can adjust its order quantities
in the following period.

Let G(z) be the expected holding and shortage cost in a period
if the realized inventory level after ordering decisions is z. We
assume that G(z) is convex in z. A typical example for G(·) is

G(z) = hE[(z − Dn)
+
] + bE[(Dn − z)+],

where h and b are, respectively, the holding and shortage cost
rates. The goal of the retailer is to find the optimal ordering policy
from the committed and non-committed shipping services so that
its expected total discounted cost over the planning horizon of N
periods is minimized.

Suppose at the beginning of period n, x is the starting inventory
level, y is the inventory level after committed order is placed, andQ
is the non-committed ordering quantity. Then, the delivery quan-
tity from the committed shipping is y − x, and the delivery quan-
tity from thenon-committed shipping ismin{Q , Rn}. Therefore, the
inventory level after the committed order and non-committed or-
der is y + min{Q , Rn}. Recall that G(z) is the expected holding and
shortage cost in period n if the realized inventory level after order-
ing decisions is z. Hence, the expected holding and shortage cost in
periodn after ordering decisions, y andQ , is ERn [G(y+min{Q , Rn})].

Let Vn(x) be the minimum expected total discounted cost from
period n until the end of the planning horizon. Given that the
starting inventory level is x, then it satisfies the following Bellman
equation:

Vn(x) = min
y≥x,Q≥0

{cH(y − x) + cLERn [min{Q , Rn}]

+ ERn [G(y + min{Q , Rn})]

+ αERn,Dn [Vn+1(y + min{Q , Rn} − Dn)]}. (1)

As usual, we let the terminal condition be VN+1(·) ≡ 0.
Ciarallo et al. [2] study a special case of the problem above

with only non-committed orders. In that work, the authors use
quasi-convexity analysis to first show that the objective function
is convex before the minimum point, and is increasing beyond
the minimum point. Then, they continue to show that the value
function is actually convex. In this paper,we solve themore general
optimization problem above using a much simpler approach.

4. Results and analysis

The following simple observation allows us to significantly
simplify the analysis of the optimal control policy. Indeed, this
result enables us to avoid the quasi-convexity analysis. Basically,
this result states the following obvious fact: if a solution optimizes
a random system for every sample path, then it also optimizes the
system for the average value.

Lemma 1. Let g(x, R) be a function of x and random variable R,
thus its value depends on the realization of R. Suppose that for any
realization of R, g(x, R) is minimized at x = x∗ that is independent of
R, then x∗ is also a minimizer of ER[g(x, R)]. In general, if the infimum
of g(x, R) over x is independent of random variable R, then

inf
x
ER[g(x, R)] = ER[inf

x
g(x, R)],

whenever the expectations exist.
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