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a b s t r a c t

Given a linear program (LP) with m constraints and n lower and upper bounded variables, any solution
x0 to LP can be represented as a nonnegative combination of at most m + n so-called weighted paths
and weighted cycles, among which at most nweighted cycles. This fundamental decomposition theorem
leads us to derive, on the residual problem LP(x0), two alternative optimality conditions for linear
programming, and eventually, a class of primal algorithms that rely on an Augmenting Weighted Cycle
Theorem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Network flow problems can be formulated either by defining
flows on arcs or, equivalently, flows on paths and cycles, see Ahuja
et al. [1]. A feasible solution established in terms of path and cycle
flow determines arc flows uniquely. The converse result, that is the
existence of a decomposition as a path and cycle flow equivalent
to a feasible arc-flow solution x0, is also shown to be true by the
Flow Decomposition Theorem, although the decomposition might
not be unique. This result can be refined for circulation problems,
establishing that a feasible circulation can be represented along
cycles only. Originally developed by Ford and Fulkerson [4] for
the maximum flow problem, the flow decomposition theory
intervenes in various situations, notably on the residual network.
It is used to prove, among many other results, the Augmenting
Cycle Theorem and the Negative Cycle Optimality Theorem. The
first allows to build one solution from another by a sequence
of cycles. The second states that arc-flow solution x0 is optimal
if and only if the residual network contains no negative cost
cycle therefore providing optimality characterization for network
flow problems. The Flow Decomposition Theorem is a fundamental
theorem as it is an essential tool in the complexity analysis of
several strongly polynomial algorithms such as theminimummean
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cycle-canceling algorithm, see Goldberg and Tarjan [6], Radzik and
Goldberg [8], and Gauthier et al. [5] for an improved complexity
result. This paper generalizes these network flow theorems to
linear programming.

The presentation adopts the organization of the introduction as
follows. In Section 2, we first present a proof of the Flow Decom-
position Theorem on networks based on linear programming argu-
ments rather than the classical constructive ones. This provides an
inspiration for the general case of linear programming. Section 3
establishes our main result based on a specific application of the
Dantzig–Wolfe decomposition principle. This is followed in Sec-
tion 4 by the proof of an Augmenting Weighted Cycle Theorem used
to derive in Section 5 two alternative optimality conditions for lin-
ear programs that are based on the properties of a residual linear
problem. We open a discussion in Section 6 which addresses the
adaptation to linear programs of theminimummean cycle-canceling
algorithm and the design of a column generation based algorithm.
Notation. Vectors and matrices are written in bold face characters.
We denote by 0 or 1 a vector with all zero or one entries of
appropriate contextual dimensions.

2. A decomposition theorem for network flow problems

Consider the capacitated minimum cost flow problem (CMCF)
on a directed graph G = (N, A), where N is the set of nodes
associated with an assumed balanced set bi, i ∈ N , of supply or
demand defined respectively by a positive or negative value such
that


i∈N bi = 0, A is the set of arcs of cost c := [cij](i,j)∈A, and
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x := [xij](i,j)∈A is the vector of lower and upper bounded flow
variables. An arc-flow formulation of CMCF, where dual variables
πi, i ∈ N , appear in brackets, is given by

z⋆
CMCF := min


(i,j)∈A

cijxij

s.t.


j:(i,j)∈A

xij −


j:(j,i)∈A

xji = bi, [πi] ∀i ∈ N

ℓij ≤ xij ≤ uij, ∀(i, j) ∈ A.

(1)

When right-hand side b := [bi]i∈N is the null vector, formula-
tion (1) is called a circulation problem. The Flow Decomposition The-
orem for network solutions is as follows.

Theorem 1 ([1, Theorem 3.5 and Proposition 3.6]). Any feasible
solution x0 to CMCF (1) can be represented as a combination of
directed path and cycle flows – though not necessarily uniquely –with
the following properties:

(a) Every path with positive flow connects a supply node to a demand
node.

(b) Atmost |A|+|N| paths and cycles have positive flow amongwhich
at most |A| cycles.

(c) A circulation x0 is restricted to at most |A| cycles.

Proof. The proof of the above theorem traditionally relies on a
constructive argument. We propose an alternative one based on
the application of the Dantzig–Wolfe decomposition principle [2].
The network problem is first converted into a circulation problem,
partitioning the set of nodes N in three subsets: supply nodes in
S := {i ∈ N | bi > 0}, demand nodes in D := {i ∈ N | bi < 0}, and
transshipment nodes inN\{S∪D} forwhich bi = 0, i ∈ N . Supple-
mentary nodes s and t are added to N for a convenient represen-
tation of the circulation problem together with zero-cost arc sets
{(s, i) | i ∈ S}, {(i, t) | i ∈ D}, and arc (t, s). Supply and demand re-
quirements are transferred on the corresponding arcs, that is, ℓsi =

usi = bi, i ∈ S, and ℓit = uit = −bi, i ∈ D. Let G+
= (N+, A+) be

the new network on which is defined the circulation problem.
Flow conservation equations for nodes in N+ together with the

nonnegativity requirements on arcs in A+ portray a circulation
problemwith no upper bounds. These define the domain SP of the
Dantzig–Wolfe subproblem whereas lower and upper bound con-
straints remain in the master problem. By the Minkowski–Weyl’s
theorem (see [9,3]), there is a vertex-representation for the domain
SP . The latter actually forms a cone that can be described in terms
of a single extreme point (the null flow vector) and a finite num-
ber of extreme rays, see Lübbecke and Desrosiers [7] for additional
representation applications.

These extreme rays are translated to the original network upon
which is done the unit flow interpretation in terms of paths and
cycles. For an extreme ray with xts = 1, we face an external cycle
inG+, that is, a pathwithinG from a supply node to a demand node,
while an extreme ray with xts = 0 implies an internal cycle in G+,
that is, a cyclewithin G. Furthermore, the extreme ray solutions to
SP naturally satisfy the flow conservation constraints and there-
fore respect the directed nature of G. Paths and cycles are therefore
understood to be directed even thoughweomit the precision in the
spirit of concision.

Let P and C be respectively the sets of paths and cy-
cles in G. The null extreme point at no cost can be removed
from the Dantzig–Wolfe reformulation as it has no contribution
in the constraint set of the master problem. Any nonnull solution
[x, xS, xD, xts]ᵀ to SP can therefore be written as a nonnegative
combination of the extreme rays only, that is, in terms of the sup-
ply–demand paths [xp, xSp, xDp, 1]ᵀ, p ∈ P , and internal cycles

[xc, 0, 0, 0]ᵀ, c ∈ C: x
xS
xD
xts

 =


p∈P

 xp
xSp
xDp
1

 θp +


c∈C

xc
0
0
0

 φc,

θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C. (2)

Define cp = cᵀxp, p ∈ P , as the cost of a path and cc = cᵀxc,
c ∈ C, as the cost of a cycle. The Dantzig–Wolfe master problem,
an alternative formulation of CMCF (1) written in terms of nonneg-
ative path and cycle θ, φ-variables, is given as

z⋆
CMCF := min


p∈P

cpθp +


c∈C

ccφc

s.t. l ≤


p∈P

xpθp +


c∈C

xcφc ≤ u
p∈P

xSpθp = bS
p∈P

xDpθp = −bD

θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C.

(3)

The rest of the proof relies on the dimension of any basis repre-
senting a feasible solution x0 to (1). The latter can be expressed in
terms of the change of variables in (2) and satisfies the system of
equality constraints in (3):
p∈P

xpθp +


c∈C

xcφc = x0
p∈P

xSpθp = bS
p∈P

xDpθp = −bD

θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C.

(4)

Since any basic solution to (4) involves at most |A| + |S| + |D|

nonnegative θ, φ-variables, there exists a representation for x0
that uses at most |A| + |N| path and cycle variables, among which
atmost |A| cycles (φ-variables). In the case of a circulation problem
for which b = 0, there are no paths involved (no θ-variables) and
x0 can be written as a combination of at most |A| cycles. �

3. A decomposition theorem for linear programs

In this section, we generalize Theorem 1 to the feasible
solutions of a linear program (LP). Although it is usually frowned
upon,wewarn the reader thatwe reuse someof the samenotations
previously seen in networks. While the semantics are a little bit
distorted, we wish to retain the ideas attached to them. The proof
again relies on a specific Dantzig–Wolfe decomposition. Consider
the following LP formulation with lower and upper bounded
variables:

z⋆
:= min cᵀx

s.t. Ax = b, [π]

l ≤ x ≤ u,
(5)

where x, c, l,u ∈ Rn, b ∈ Rm, A ∈ Rm
× Rn, and m ≤ n.

Without loss of generality, we also assume that right-hand side
vector b ≥ 0. If b = 0, we face a homogeneous system of
constraints. The vector of dual variables π ∈ Rm associated
with the equality constraints appears within brackets. In order
to perform our specific decomposition, we introduce a vector of
nonnegative variables v ∈ Rm and rewrite LP (5), splitting the
constraints in two subsets:
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