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a b s t r a c t

Given n independent integer-valued random variables X1, X2, . . . , Xn and an integer C , we study the
fundamental problem of computing the probability that the sum X = X1+X2+· · ·+Xn is at most C . We
assume that each random variable Xi is implicitly given by an oracle Oi, which given two input integers
n1, n2 returns the probability of n1 ≤ Xi ≤ n2. We give the first deterministic fully polynomial-time
approximation scheme (FPTAS) to estimate the probability up to a relative error of 1 ± ϵ. Our algorithm
is based on the technique for approximately counting knapsack solutions, developed in Gopalan et al.
(2011).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We study the following fundamental problem. The input con-
sists of n independent (not necessarily identically distributed) ran-
dom integral variables X1, . . . , Xn and an integer C . Our task is to
compute the following probability value

F(C) = Pr


n

i=1

Xi ≤ C


. (1)

It is well known that computing F(C) is #P-hard (see e.g., [9]).
The hardness of computing F(C) has an essential impact in the area
of stochastic optimization asmany problems generalize and/or uti-
lize this basic problem in one way or another, thus inheriting the
#P-hardness. Although we can sometimes use for example the lin-
earity of expectation to bypass the difficulty of computing F(C),
more than often no such simple trick is applicable, especially in the
context of risk-aware stochastic optimization where people usu-
ally paymore attention to the tail probability than the expectation.

Despite the importance of the problem, surprisingly, no approx-
imation algorithm with provable multiplicative factor is known.
We note that we can easily obtain an additive PRAS (polynomial-
time randomized approximation scheme) for this problem via the
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Monte-Carlo method: for each i ∈ {1, 2, . . . , n}, generate K inde-
pendent samples X (k)

i , k = 1, 2, . . . , K , according to the distribu-
tion of Xi, and then use the empirical average

F(C) =
1
K

K
k=1

I


n

i=1

X (k)
i ≤ C


as the estimation of F(C), where I(·) is the indicator function. It is
easy to see thatF(C) is an unbiased estimator of F(C). By standard
Chernoff bound, one can see that with K = poly(1/ϵ) samples,
the estimate is within an additive error ϵ from the true value with
constant probability (see e.g., [14]). To get a reasonable multiplica-
tive approximation factor (say a constant close to 1), we need to
set the additive error at the order of F(C). So the number of sam-
ples needs to be poly(1/F(C)), which can be exponentially large,
when F(C) is exponentially small. In certain application domains
such as risk analysis, small probabilities (often associated with
catastrophic losses) can be significant, thus demanding accurate
estimations. Therefore, it is important to develop polynomial time
approximation schemes for estimating such small probabilities.
Assumptions. Before presenting our main result, we need some
notations and assumptions of the computation model. We assume
that all random variables are discrete and the support of Xi, de-
noted as suppi, is finite and consists of only integers. Without loss
of generality, we can assume all Xis are nonnegative (i.e., suppi ⊆

N) and 0 ∈ suppi for all i. To see why this is without loss of
generality, simply consider the equivalent problem of computing
Pr[
n

i=1(Xi − min Xi) ≤ C −
n

i=1 min Xi], where min Xi is the
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minimum value in suppi. Under such an assumption, the prob-
lem is non-trivial only for C > 0. Moreover, we can assume that
suppi ∈ [0, C+1] for all i since we can place all mass in [C+1,∞)
at the single point C + 1, which does not affect the answer. The
distribution of each random variable Xi is implicitly given by an
oracle Oi, which given two input value (n1, n2) returns the value
Pr[n1 ≤ Xi ≤ n2] in constant time.

Our main result is a fully polynomial-time approximation scheme
(FPTAS) for computing F(C). For ease of notation, we use (1 ±
ϵ)F(C) to denote the interval [(1 − ϵ)F(C), (1 + ϵ)F(C)]. Let
∆ =


i Pr[Xi = 0]. Clearly ∆ is a lower bound on the solution.

Recall that we say there is an FPTAS for the problem, if for any
positive constant ϵ > 0, there is an algorithm which can produce
an estimateF withF ∈ (1 ± ϵ)F(C) in poly(n, ϵ−1, log C, log 1

∆
)

time (see e.g., [14]).

Theorem 1.1. We are given n independent nonnegative integer-
valued random variables X1, . . . , Xn, a positive integer C, and a
constant ϵ > 0. Suppose that for all i ∈ {1, 2, . . . , n}, suppi ⊆

[0, C+1], 0 ∈ suppi and there is an oracleOi, which, upon two input
integers (n1, n2), returns the value Pr[n1 ≤ Xi ≤ n2] in constant time.
There is an FPTAS for estimating Pr[

n
i=1 Xi ≤ C] and the running

time is O
 n3

ϵ2
log( 1

∆
)2 log C


.

Remark 1. For simplicity of presentation, we assume in the above
theorem a computation model in which any real arithmetic can
be performed with perfect accuracy in constant time and the
probability values returnedby the oracle are reals, alsowith perfect
accuracy. In Section 2.3, we show how to implement our algorithm
in a computationmodel where only bit operations are allowed and
the oracles also return numerical values with finite precision. We
show that the bit complexity of the algorithm is still a (somewhat
larger) polynomial.

Remark 2. Note that, the oracle assumption is weaker than as-
suming the explicit representations of the distributions (i.e., listing
the probability mass at every point). In fact, if the input is the ex-
plicit representations of the distributions, we can preprocess the
input in linear time so that each oracle call to Oi can be simulated
in O(log |suppi|) time. This can be done by computing the prefix
sums Pr[Xi ≤ x] for all x ∈ suppi in O(|suppi|) time. Then for each
oracle call (n1, n2), we use binary search to find out the smallest
value x1 ∈ suppi that is no smaller than n1 and the largest value
x2 ∈ suppi that is no larger than n2 in O(log |suppi|) time. There-
fore, Pr[n1 ≤ Xi ≤ n2] is the same as Pr[x1 ≤ Xi ≤ x2], which can
be computed from the prefix sums in constant time.

1.1. Related work

There is a large body of work on estimating or upper/lower-
bounding the distribution of the sum of independent random
variables. See e.g., [1,18,12,3,13]. Thoseworks are based on analytic
numerical methods (e.g., Edgeworth expansion, saddle point
method) which either require specific families of distributions
and/or do not provide any provable multiplicative approximation
guarantees.

Our problem is a generalization of the counting knapsack prob-
lem. For the counting knapsack problem, Morris and Sinclair [15]
obtained the first FPRAS (fully polynomial-time randomized ap-
proximation scheme) based on the Markov Chain Monte-Carlo
(MCMC) method. Dyer [4] provided a completely different FPRAS
based on dynamic programming. The first deterministic FPTAS is
obtained by Gopalan et al. [7] (see also the journal version [19]).

Our problem is also closely related to the threshold probabil-
ity maximization problem (see a general formulation in [11]). In

this problem, we are given a ground set of items. Each feasible so-
lution to the problem is a subset of the elements satisfying some
property (this includes problems such as shortest path, minimum
spanning tree, and minimum weight matching). Each element b
is associated with a random weight Xb. Our goal is to find a fea-
sible set S such that Pr[


b∈S Xb ≤ C] is maximized, for a given

threshold C . There is a large body of literature on the threshold
probability maximization problem, especially for specific com-
binatorial problems and/or special distributions. For example,
Nikolova, Kelner, Brand and Mitzenmacher [17] studied the cor-
responding shortest path version for Gaussian, Poisson and ex-
ponential distributions. Nikolova [16] extended this result to an
FPTAS for any problem with Gaussian distributions, if the deter-
ministic version of the problem has a polynomial-time algorithm.
The minimum spanning tree version with Gaussian distributed
edges has also been studied in [5]. For general discrete distri-
butions, Li and Deshpande [10] obtained an additive PTAS if the
deterministic version of the problem can be solved exactly in
pseudo-polynomial time. Very recently, Li and Yuan [11] further
generalized this result to the class of problems forwhich themulti-
objective deterministic version admits a PTAS.

Our problem is also closely related to the fixed set version of
the stochastic knapsack problem. In this problem, we are given
a knapsack of capacity C and a set of items with random sizes
and profits. Their goal is to find a set of items with maximum
total profit subject to the constraint that the overflow probabil-
ity is at most a given parameter γ . Kleinberg, Rabani and Tardos
[9] first considered the problem with Bernoulli-type distributions
and provided a polynomial-time O(log 1/γ )-approximation. Bet-
ter results are known for specific distributions, such as exponen-
tially distributions [6], Gaussian distributions [8,16]. For general
discrete distributions, bi-criteria additive PTASes (i.e., the overflow
probability constraint may be violated by an additive factor ϵ for
any constant ϵ > 0) are known via different techniques [2,10,11].

2. Algorithm

Our algorithm is based ondynamic programming. In Section 2.1,
we provide the recursion of the dynamic program, which is largely
based on the idea developed in [7,19], with some necessary
adaptations. However, since the support of each random variable
can be exponentially large, it is not immediately clear how the
recursion can be implemented efficiently given the oracles. We
address this issue in Section 2.2. In Section 2.3, we analyze the bit
complexity of our algorithm.

2.1. The dynamic program

We first notice that Pr[
i

j=1 Xj ≤ C], for any i ∈ {1, 2, . . . , n},
is a nondecreasing function of C . We consider its inverse function
τ(i, a) : {1, 2, . . . , n} × R≥0 → N ∪ {±∞}, which is defined to

τ(i, a) =


min


C | C ≥ 0 and Pr


i

j=1

Xj ≤ C


≥ a


, 0 < a ≤ 1;

+∞, a > 1;
−∞, a = 0.

It is easy to see that τ(i, a) is nondecreasing in a. The following sim-
ple lemma is needed. We omit the proof, which is straightforward.

Lemma 2.1. Both of the following statements hold true.

1. Pr
n

i=1 Xi ≤ C

= max{a : τ(n, a) ≤ C}.

2. τ(i, a) = 0 for any i ∈ {1, 2, . . . , n} and a ≤ ∆, where
∆ =


i Pr[Xi = 0].
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