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a b s t r a c t

This paper introduces three (one linear and two nonlinear) automatic scaling techniques for NLPs with
states and constraints spread over several orders of magnitude, without requiring complex off-the-shelf
external tools. All of these methods have been compared to standard techniques and applied to three
problems using SNOPT and IPOPT. The results confirm that the proposed techniques significantly improve
the NLP conditioning, yielding more reliable and in some cases, faster NLP solutions.
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1. Introduction

Optimal control problems which are too complex to be solved
analytically can often be solved numerically once the original prob-
lem is converted to a nonlinear programming problem (NLP). This
conversion is carried out by using one of the many transcription
methods, which transform the original continuous problem into
an approximate discretized version that can be numerically solved
with one of the well-known NLP solvers such as SNOPT [7] or
IPOPT [12]. Unfortunately, having a good transcription method is
not sufficient to ensure the quality of the solution, since poor scal-
ing can make it difficult to compute the minimizer accurately or to
even compute theminimizer at all. To overcome this problem, his-
torically the first approach has always been the time-consuming
process of manually scaling the problem [2,10], although sev-
eral automatic scaling methods can also be found in the litera-
ture, c.f. the isoscaling (IS) and Jacobian rows normalization (JRN)
methods described in [10,1,9]. The evolution of these automatic
scaling techniques leads to the development of the projected Ja-
cobian rows normalization (PJRN) which we propose here, and
by extension, to the nonlinear scaling methodologies. For com-
pleteness, it is important to stress that convex optimization [4] or
pre-optimization [8] could also be used to automatically scale the
NLP, although this is out of the scope of this work, since we are
interested in simple techniques which do not require additional
off-the-shelf software. This paper is organized as follows. Section 2
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characterizes the NLP problem to be scaled, and Section 3 briefly
reports the standard scaling technique for the states, which is in-
dependent of the NLP scaling that we discuss here. Sections 4 and 5
present the proposed linear and nonlinear automatic scaling tech-
niques. Finally, Section 6 reports the improvements in the condi-
tion numbers obtained with the presented techniques. Moreover,
the CPU times required to scale and solve the NLP problems are re-
ported, along with the minimal cost obtained by solving the scaled
NLP for the three different problems analyzed here.

2. Characterization of the NLP problem

A detailed description of NLPs arising from the transcription of
optimal control problems can be found in [3,5]. In the general case,
we can formulate the NLP as having a cost function J(X), a set of
algebraic constraints F(X) representing the differential equations,
and in some cases, a set of path constraints G(X). Hence the NLPs
we consider are of the form (1).

min J = J(X),

F(X) = 0
gL ≤ G(X) ≤ gU .

(1)

A measure of the quality of a scaling method is the condition
number of the Jacobian of the NLP (1), which in the general case is
a rectangular matrix given by (2).

Jac =


∇J
∇F
∇G


. (2)
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We use the condition number of the Jacobian as a measure
of a scaling method’s quality because the Jacobian defines the
search direction during the iterative process, and therefore a well-
conditioned Jacobian is essential for solving (1) without excessive
rounding errors.

In the following sections, we will show how the Jacobian of the
differential equations F(X) and the path constraints G(X) can be
treated with different techniques.

3. Scaling of NLP states

The states X of the NLP problem are scaled using the standard
linear transformation given in [1], regardless of the NLP scaling
method (IS, JRN, etc.) that we use. Specifically, the scaled state X̃
is given by (3).

X̃ = Kx · X + bx. (3)

Kx is a diagonal matrix, and bx is a vector having the same di-
mensions as X. Since we always deal with bounded states and con-
trol, the diagonal elements of the matrices Kx and bx are defined
to be

Kxii =
1

XUi − XLi
, bxi = −

XLi

XUi − XLi
. (4)

Note that the transformation (4) yields scaled states X̃which al-
ways lie in the interval [0, 1]. In case of unbounded states, artificial
upper and lower boundaries are usually introduced [1].

4. Linear techniques

Linear scaling techniques use a scaling of the form (5).

F̃ = Kf · F, G̃ = Kg · G. (5)

Kf and Kg are diagonal matrices. The isoscaling (IS) method is
one such technique whereby the constraints F are scaled exactly
like the states, that is,

Kf = Kx,

where Kx is given by (4), see [1,9]. Note that isoscaling does not
help in scaling the constraints G. A possible refinement of this ap-
proach has been suggested by Rao [10], who uses randomly sam-
pled points around the vector X, and computes the mean of the
norms of the Jacobian rows of F andG instead of the norm of the Ja-
cobian rows. Unfortunately, this technique significantly increases
the CPU time needed to compute the scaling coefficients, since the
Jacobian matrix must be evaluated many more times. Next, we in-
troduce a simple linear scaling technique which does not require
additional Jacobian evaluations, and hence is much less computa-
tionally expensive.

4.1. Projected Jacobian rows normalization

Isoscaling bases the scaling of the constraints solely on the scal-
ing of the states. In other words, it does not take into account the
relationship between the states and the constraints, which is rep-
resented in linearized form by the Jacobian. Conversely, the Ja-
cobian rows normalization (JRN) only considers this relationship,
without involving the states’ normalization in the process. Specif-
ically, in the JRN technique, the diagonal elements of Kf and Kg are
given by (6).

Kfii =
1

|∇F|i
, Kgii =

1
|∇G|i

. (6)

The projected Jacobian rows normalization (PJRN) technique
which we propose considers both of these factors. Specifically, in
the PJRN, the diagonal elements of Kf and Kg are given by (7).

Kfii =
1∇F · K−1

x

i

, Kgii =
1∇G · K−1

x

i

. (7)

As we will show in Section 6, this scaling generally leads to
a better-conditioned Jacobian matrix, and to a more uniformly
distributed singular values.

The Jacobian of the PJRN-scaled NLP is given by (8).

˜Jac =


∇̃ J̃
∇̃F̃
∇̃G̃

 =

 KJ · ∇J · K−1
x

KF · ∇F · K−1
x

KG · ∇G · K−1
x

 . (8)

KJ is a parameter which normalizes the cost function J , Kx is
given by (4), and Kf and Kg are given by (6).

5. Nonlinear techniques

Nonlinear scaling techniques generalize the second relationship
reported in (5). Note that it is also possible to scale F with a non-
linear scaling technique, however we will take advantage of the
boundedness of G, and hence we only consider the nonlinear scal-
ing of G in this paper. Specifically, we propose using the logarithm
and the inverse-power.

5.1. Logarithmic scaling

The first nonlinear scaling technique we propose is the natural
logarithm, in which case the scaled constraint function is given
by (9).

G̃ = log (G + C) . (9)

The constant vector C ensures that the argument of the loga-
rithm is always greater than or equal to 1. Specifically, since the
constraint function is bounded from below by gL (1), we choose C
to be given by (10).

C = −gL + 1. (10)

When the constraints are intrinsically positive (e.g. when we
consider the dynamic pressure or the heat rate, as in the case of
the Space Shuttle Entry Problem), this simply reduces to

C = 1 (11)

where 1 is a vector of ones with the same dimensions as G.
The Jacobian of a logarithmically scaled NLP is of the form (8),

where ∇G̃ is given by (12).

∇̃G̃ =
1

G + C
· ∇G · K−1

x . (12)

Note that since the logarithmic scaling only affects G, Kf must
be chosen using a linear scaling technique such as IS, JRN, or PJRN.

5.2. Inverse-power scaling

The second nonlinear scaling technique we propose is the
inverse-power scaling technique, in which case the scaled con-
straint function is given by (13).

G̃ = (G + C)
1
n (13)

n is a positive integer, andC is chosen so thatG+C is always greater
than or equal to 1. Specifically, in the present paper, we always
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