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a b s t r a c t

Socially optimal behavior can be achieved through the cooperation of the participating agents with a
central planner. What happens when only a fraction of the population cooperates? We investigate this
question in a Markovian single server queue. The main result is non-intuitive: the optimal control of
cooperative customers is independent of their proportion.We also conclude that the gain from controlling
cooperative customers after they join the queue is relatively small.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Human altruistic behavior has been experimentally verified,
and extensive literature analyzes its important consequences on
economic behavior. The level of altruism is often measured as the
degree of influence that the happiness or welfare of others has on
the individual’s own happiness or welfare. See, for example, [1,2,5]
and their references. This literature considers agents that are par-
tially altruistic. We consider, in contrast, a heterogeneous popu-
lation where one’s degree of altruistic behavior is dichotomous,
being either totally selfish or totally devoted to the maximization
of social welfare.

Ourmainmotivation to investigate binary altruism comes from
situations where a central planner’s control of the population is
limited, either because it can exercise authority on just a segment
of the population, or because a request to cooperate with a certain
policy is fulfilled by only a fraction of the population.

Examples are clearly ubiquitous: a demand to invest in clean
energy can be enforced in some counties but not in others; a re-
duction in the use of a congested road can be exercised by control-
ling government vehicles but not private ones, or by tolling some
roads but not others; only a fraction of the population will posi-
tively respond to the call to donate blood during an emergency or
to be vaccinated to prevent an epidemic of an infectious disease,
and not all drivers monitor travel information or advice from any
one source—be it radio, TV, Internet, text messages, etc.; taxation
and fines may be effective policy enforcing instruments in some

∗ Corresponding author.
E-mail addresses: email2gail@gmail.com, gailgf@post.tau.ac.il

(G. Gilboa-Freedman), hassin@post.tau.ac.il (R. Hassin).

segments of the population but may little change the behavior of
others. In some situations, the choice of whether or not to comply
with the central planner’s instructions simply depends on the in-
dividual’s degree of altruistic behavior (e.g., [14]). Staggered hours
(e.g., [13]) and flextime (e.g., [19]) have been suggested in order
to reduce road congestion during rush hours. A central question is
whether, and how, a government can achieve a significant reduc-
tion of congestion by instructing thoseworkplaceswhich are under
its control to participate.

The fact that only a fraction of the population cooperates with
the central planner’s policy should obviously affect its instructions.
For example, if pollution must be reduced to a given level, but
cooperation is limited, then cooperative agents should be asked to
reduce their emission of poisonous gases more than in the case of
full cooperation. Two questions are naturally asked: What is the
desired behavior of cooperative individuals given their number in
the population, and how close to the socially maximal welfare can
we get at a given level of cooperation.

For example, consider the following variation of the celebrated
‘‘tragedy of the commons’’: The size of the population, N , is very
large. Individuals independently decide whether they participate in
some activity, such that if X participate, then each of them obtains
utilityN−X . The expected value of the aggregate utility, X(N−X),
is maximized when each individual participates with probability
0.5, but when all are selfish, there is a unique equilibrium such that
the whole population participates, with zero gain. Suppose now
that a fraction α of the population is ready to cooperate. If α ≤ 0.5,
then the social planner should instruct the cooperative individuals
not to participate. If α > 0.5 then they will be instructed to
participate with probability 1 −

1
2α < 0.5. As intuitively expected,

the lower the level of cooperation, the smaller the probability that
a cooperative individual should participate. In other words, the
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cooperative individuals compensate for the non-responsiveness of
the non-cooperative fraction.

Of course, it is well known that the suboptimality of individual
behavior as in this example, is caused because individuals ignore
the negative externalities associatedwith participation. Investigat-
ing a general model of heterogeneous population may not lead to
conclusive results, and we therefore focus on a certain structured
setting. It turns out that this model is rich enough to provide un-
expected insights.

We note that it is not always true that if only some agents
adopt a socially beneficial policy then they should take ‘‘stronger’’
actions than if everyoneparticipated. The theory of the second-best
provides such examples (see, for example, [17,23]).

The seminal paper on a queueing system with strategic
customers is Naor (1969) [20], see Hassin and Haviv (2003) [12] for
an exposition of this literature. In Naor’s model customers observe
the queue length prior to their join-or-balk decision. The value of
service is common and finite, and there is a constant waiting cost
per unit time. Both the individual and social welfare maximizing
strategies dictate joining iff the queue length is smaller than a given
threshold. But the social welfare maximizing threshold is smaller
than the equilibrium threshold.

Strategic queueing theory focuses on two types of situations. In
one, customers are cooperative, obeying a central planner. In the
other, customers are non-cooperative, maximizing their own wel-
fare. In the real world, customers are diverse in their behavior. For
example, legislationmay force different disciplines on segments of
the population.

We extend Naor’s model by assuming a mixed population of
controlled (or, cooperative) and uncontrolled (noncooperative)
customers. A similar extension has been introduced [3], but, their
model differs from ours in two crucial ways: the uncontrolled cus-
tomers do not behave strategically (they always join the system),
and the objective is to maximize the profit obtained from the con-
trolled customers.

We consider two modes of control. With admission control the
manager instructs cooperative customers to join or balk upon their
arrival. With dynamic control, the manager can also instruct them
to give up their position in the queue (without leaving the queue)
at any time during their stay in the system, or even to abandon
the queue and give up service. It is intuitively expected that the
existence of noncooperative customers, should result in applying
stricter admission rules on cooperative customers, because arrivals
of selfish customers may generate long queues. This intuition is
verified under admission control, but unexpectedly fails when dy-
namic control is exercised. This outcome is our main insight. The
comparison of the two modes leads to the conclusion that the cost
reduction obtained from dynamic control is in most cases quite
small.

We also investigate the marginal effect of cooperation. We
find that when the system is not heavily congested, coopera-
tive customers have disproportional influence. When the system
is congested, the influence of cooperation is greatest when the
population has about the same number of cooperative and non-
cooperative agents. This finding can be compared to [10].

The literature that has the highest resemblance to our model
envisions a Stackelberg type game where the social planner leads
by instructing the cooperative agents, and the non-cooperative
agents follow. For examples, [15,16,6]. In contrast, decisions of the
central planner in our model are made dynamically in response
to the state of the system. The instructions of the central planner
do not affect the equilibrium strategy of the non-cooperative cus-
tomers.

There are examples in the queueing literature where only one
of two customer classes can be controlled by the queue manager
(for example, [18,9,22,4,7]), but in these models the two classes
also differ by other attributes and the importance of controlling
more customers is not a central issue. In our model, customers are

homogeneous except for that some obey the central planner while
the others are noncooperative.

2. The model

Naor (1969) considered a single server queue with Poisson ar-
rival process of homogeneous customerswith rate λ, and service of
exponentially distributed duration with rate µ. (The assumptions
of a single server and Poisson arrivals are not essential to our analy-
sis, which can be extended to a G/M/s queueing system, as in [24].)
The value of service is R per customer, and the cost of spending a
unit time in the system is C . After normalization, the model has
two parameters: the normalized traffic intensity ρ =

λ
µ

and the
normalized value of service in terms of the expected waiting cost
for a single service ν =

Rµ
C ≥ 1.

The equilibrium solution follows a pure threshold strategy,
namely, for some integer ne, a customer joins the queue iff he ob-
serves at most ne − 1 customers. It is straightforward that ne = Rµ

C


= ⌊ν⌋. The socially-optimal solution is also characterized

by a threshold strategy n∗. Define g(ν) =
ν(1−ρ)−ρ(1−ρν )

(1−ρ)2
. Then

n∗
= ⌊ν∗

⌋, where ν∗ is the unique solution to g(ν) = νe. Naor
observed that n∗

≤ ne.
We extend Naor’s model by assuming that a proportion α of

the customers are cooperative and obey a social planner, while
the rest are non-cooperative and optimize their own welfare by
following the threshold strategy ne. We denote cooperative and
non-cooperative customers by c-customers and n-customers, re-
spectively.

3. Dynamic control

Dynamic control utilizes the discipline of c-customers to the
maximal extent. Themanager instructs c-customers to join or balk
upon their arrival. Additionally, the manager can instruct them to
renege or give up their position in the queue. In particular, since
a c-customer can be instructed to leave at any time, there is no
loss of optimality in giving priority to n-customers, and moreover
when an n-customer arrives and a c-customer is served, service is
preempted: the c-customermoves back to the queue and the arriv-
ing n-customer enters service. We assume that when a preempted
service is resumed it starts from the point of preemption so that
the discipline is work conserving. It follows that a strategy of the
central planner is defined by themaximumnumber of c-customers
g(i) allowed to stay in the queuewhen there are in-customers in it.

The naive strategy is defined by g(i) = max(0, n∗
− i). It is

naive in the sense that c-customers behave as if all others are also
cooperative. In this section we prove that the naive strategy is
socially optimal.

A transparent customer (or, a t-customer) is a customer who ob-
tains low priority relative to all other customers. In our discussion,
there is at most one such customer. Thus, he is served only if there
is no other customer in the system, and his service is preempted
if a new customer arrives while the t-customer is in service. He is
‘transparent’ because the other customers are not affected by his
existence in the system and therefore they ignore him.

Theorem 3.1. Suppose that noncooperative customers behave ac-
cording to individual thresholds all of which are at least n∗. Then, the
naive strategy by the cooperative customers maximizes the expected
social welfare of the system.

Proof. Our proof follows the logic of Hassin [11]. Consider Naor’s
model, and a cooperative customer who arrives when the queue
length is n < n∗. We refer to this customer as ‘‘tagged’’. Social
optimality requires that the tagged customer joins the queue. So-
cial welfare is not affected by the order customers are served, as
long as the server is always busy when the system is not empty.
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