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a b s t r a c t

We propose an Integer Linear Programming (ILP) approach for solving integer programs with bilinear
objectives and linear constraints. Our approach is based on finding upper and lower bounds for the integer
ensembles in the bilinear objective function, and using the bounds to obtain a tight ILP reformulation
of the original problem, which can then be solved efficiently. Numerical experiments suggest that the
proposed approach outperforms a latest iterative ILP approach, with notable reductions in the average
solution time.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following bilinear integer program (BIP),

(P0) max
x,y


αTx


·

βTy


(1)

subject to aT
kx + bT

ky ≤ dk, ∀ k = 1, 2, . . . , K ,

x ∈ NN , y ∈ NM

where N,M , and K are positive integers, α = [α1, α2, . . . , αN ]
T

and x = [x1, x2, . . . , xN ]
T are N × 1 vectors of non-negative

integers,β = [β1, β2, . . . , βM ]
T and y = [y1, y2, . . . , yM ]

T areM×

1vectors of non-negative integers, andak andbk areN×1 andM×1
real vectors respectively. We also use the superscript T to denote
the vector transpose, and N the set of non-negative integers.
This integer programming problem arises in several contexts,
including bipartite graphmatching and optimizing product bundle
compositions [5].

By grouping the variables x and y into a single vector, the
problem (P0) can be viewed as an Integer Quadratic Programming
(IQP) problem, which is in general non-convex. IQP problems can
be solved using a series of convex or linear relaxations with valid
inequalities [4,3,10]. Such IQP methods however do not exploit
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the special ensemble product structure of the objective function
in (P0), and can lead to inefficient solvers for (P0).

Alternatively, if all integer variables are bounded, one can adopt
the Binary Binary Linearization (BBL) approach [1,2], in which
every integer variable in x and y is replaced with its binary
decomposition, and then linearizing the resulting binary products
in the objective function via McCormick relaxations [9]. The
resulting optimization program is a binary linear program, which
can then be solved using standard Integer Linear Programming
(ILP)methods. However, since the feasible region for x and y can be
very large, this approach suffers from the curse of dimensionality
problem.

Another way of solving (P0) is the Binary Integer Linearization
(BIL) method [2,7,6]. By substituting x = [x1, x2, . . . , xN ]

T and y =

[y1, y2, . . . , yM ]
T into (1) and expanding, we see that the objective

function of (P0) consists of bilinear terms of the form cijxiyj, where
cij is a real number. In the BIL approach, an integer of each bilinear
term cijxiyj, say xi, is replaced with its binary decomposition while
keeping the other integer unchanged [5]. This results in less binary
variables and linearization constraints,whichwill hopefully lead to
amore efficient solver for (P0). However, in this case, there are still
Θ(M

N
i=1 log2 ki) variables and constraints, where ki is an upper

bound for xi for each i. This limits the BIL approach to problem sizes
that are relatively small, and researchers are thusmotivated to find
a more efficient approach for solving (P0).

In the recent paper [5], the authors exploit a structural property
of the objective function in (P0), and proposed novel iterative ILP
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approaches called LIN and LIN+ for solving (P0). In LIN, at each
iteration an ILPwith objective functionαTx+βTy is solved together
with appropriate lower bound constraints, to obtain a common
lower bound for the integer ensembles αTx and βTy. This new
lower bound is then used as constraints in the next iteration. The
algorithm converges if the ILP becomes infeasible, leading to an
optimal solution of (P0), if there is any. LIN+ is an enhanced version
of LIN, which under certain conditions, ensures that the objective
function value improves at each iteration step. Both approaches
are in contrast to the usual method of finding individual bounds
for each integer variable, as is normally done in the IQP, BBL
and BIL literature [4,3,10,2]. Numerical experiments conducted
by [5] showed that their iterative ILP approaches solve (P0) much
more efficiently than the BIL approach, but the computation time
depends on the number of iterations required before the algorithm
converges. There are however no guarantees on the number of
iterations required, which can be an issue in practical applications.

Motivated by the iterative ILP approach of [5] and the BIL
method, we propose a hybrid approach that solves the problem
(P0) even more efficiently, and in a fixed number of iterations.
This is achieved by deriving a new upper bound for the ensembles
αTx and βTy, in addition to the lower bound used in LIN and
LIN+. The new upper bound leads to a tight binary representation
of the ensemble αTx or βTy, which then allows us to apply the
BIL approach to an ensemble, instead of to individual integer
variables in x or y. This significantly reduces the number of
binary variables and linearization constraints in the reformulation,
leading to a highly efficient solution for (P0).We present numerical
experiments, which suggest that our approach is superior to LIN
and LIN+, and consequently also the BIL method.

The rest of this letter is organized as follows. In Section 2,
we present our new ILP approach for solving (P0), and review its
connections to LIN and LIN+. In Section 3, we present numerical
results based on a nonlinear bipartite matching problem to verify
and compare the performances of our proposedmethodwith those
of LIN and LIN+. Finally, we conclude in Section 4.

2. A new ILP solution approach

In this section, we first present an elementary result that
provides an upper bound to the optimal ensembles αTx and βTy in
(P0), which then allows us to propose enhanced versions of LIN and
LIN+. These procedures are still iterative in nature, with minimal
improvement (if any) in computation efficiency compared to LIN
and LIN+. Therefore, we further propose a novel solution approach
based on our upper bound and the BIL method, and show how to
reformulate (P0) into an ILP that can be solved efficiently.

The following result plays a central role in our proposed meth-
ods. This result is similar to Lemma 1 of [5], which only provides
the lower bound for po1 and po2.

Lemma 1. Suppose that p1, p2, po1, p
o
2 > 0 and p1 ≤ p2. If p1+p2 ≥

po1 + po2 and p1p2 ≤ po1p
o
2, then

p1 ≤ po1 ≤ p2, and p1 ≤ po2 ≤ p2. (2)

Furthermore, if p1p2 < po1p
o
2, then all the inequalities in (2) are

strict.

Proof. We have p1(p1 + p2) − p21 = p1p2 ≤ po1p
o
2 = po1(p

o
1 + po2) −

(po1)
2

≤ po1(p1 + p2) − (po1)
2, and (po1 − p1)(po1 − p2) ≤ 0. Since

p1 ≤ p2, we obtain p1 ≤ po1 ≤ p2. Similarly, with p2(p1+p2)−p22 =

p1p2 ≤ po1p
o
2 = po2(p

o
1+po2)−(po2)

2
≤ po2(p1+p2)−(po2)

2, it follows
that (po2−p1)(po2−p2) ≤ 0 and hence p1 ≤ po2 ≤ p2. If p1p2 < po1p

o
2,

then a similar argument as above shows that the inequalities in (2)
are strict. The proof is now complete. �

A useful implication follows from the above lemma.

Corollary 1. Suppose that the positive pairs (p1, p2) and (po1, p
o
2),

satisfying p1p2 ≠ po1p
o
2, are optimal solutions for maximizing q1 + q2

and q1q2 subject to the same constraints, respectively. Then, we have
p < po1 < p and p < po2 < p, where p = min{p1, p2} and
p = max{p1, p2}.

Proof. Sincewe have p1p2 < po1p
o
2 and p1+p2 ≥ po1+po2, the result

follows directly from Lemma 1. �

Suppose that (xo, yo) is an optimal solution of (P0), and assume
for the moment that the optimal objective value is non-zero. By
interpreting αTxo as po1 and βTyo as po2 in Corollary 1, we can try
to obtain the optimal solution of (P0) by solving a series of ILPs
iteratively, where at iterationm ≥ 0, we solve the ILP:

(P1) max
x,y

αTx + βTy

subject to aT
kx + bT

ky ≤ dk, ∀ k = 1, 2, . . . , K ,

p
m

≤ αTx ≤ pm, (3)

p
m

≤ βTy ≤ pm, (4)

x ∈ NN , y ∈ NM .

In (3) and (4) of the above program (P1), the bound p
m
is set as 1

when m = 0, and updated as p
m

= min{αTx∗, βTy∗
} + 1 at the

mth iteration for m ≥ 1, where (x∗, y∗) is an optimal solution of
(P1) at the (m−1)-th iteration. Similarly, the bound pm is set as∞

when m = 0, and updated as pm = max{αTx∗, βTy∗
} − 1 at the

mth iteration for m ≥ 1. We call this the eLIN algorithm. The only
difference between eLIN and LIN of [5] lies in (3) and (4), where in
LIN, only the lower bounds are used at each iteration. The iterations
are repeated until (P1) becomes infeasible, whereuponwe say that
the algorithm has converged. If (P1) turns out to be unbounded
when m = 0, then the original problem (P0) is also unbounded;
and if (P1) is infeasible when m = 0, it is possible that (P0) has an
optimal solution with the objective value zero, in which case it can
be easily verified by looking for a solution with either xi = 0 for
all i such that αi > 0, or yj = 0 for all j such that βj > 0 [5].
Otherwise, the best solution of all previous iterations gives the
optimal solution of (P0), as shown in the following lemma.

Lemma 2. Suppose that eLIN is feasible at the first iteration. Then,
the solution found by eLIN that has the maximal objective value
(P0) amongst all feasible iterations is an optimal solution of (P0) .

Proof. We show this by contradiction. We note that eLIN always
converges since the constraints (3)–(4) are tightened at each it-
eration. Assume that the optimal solution of (P0) is not amongst
the sequence of feasible solutions found by eLIN. Then by Corol-
lary 1, eLINmust be feasible at the last iteration, which contradicts
the fact that eLIN always terminates at an infeasible iteration. The
lemma is now proved. �

Numerical examples can be found to show that the last feasible
solution returned by eLIN before it converges is not necessarily the
optimal solution of (P0). Thismeans that after reaching the optimal
solution for (P0), the lower and upper bounds returned by eLIN
are no longer meaningful bounds for the optimal solution of (P0),
and eLIN wastes the computation time searching for non-optimal
solutions until the auxiliary problem (P1) becomes infeasible. The
same remark also applies to LIN.

The above insight implies that at each iteration, eLIN may not
improve the objective value of (P0). Suppose that (x∗, y∗) is the
optimal solution of (P1) at a particular iteration. To ensure that the
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