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a b s t r a c t

We study infinite-horizon nonstationary Markov decision processes with discounted cost criterion, finite
state space, and side constraints. This problem can equivalently be formulated as a countably infinite
linear program (CILP), a linear program with countably infinite number of variables and constraints. We
provide a complete algebraic characterization of extreme points of the CILP formulation and illustrate the
characterization for special cases. The existence of a K -randomized optimal policy for a problem with K
side constraints also follows from this characterization.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For the last couple of decades, growing attention has been given
to solving constrained Markov decision processes (MDPs). Con-
strained MDPs are MDPs optimizing an objective function while
satisfying constraints, typically on budget, quality, etc. In addi-
tion, decisionmaking problemswithmultiple criteria are often ap-
proached by optimizing one criterion while satisfying constraints
on the others, which also turns into a constrained MDP. One set-
ting where such problems often arise is data communications. In
queueing systems with service rate control, the average through-
put is maximized with constraints on the average delay [13,15].
Priority queueing systems with a fixed service rate are another
example [4,17,20]. Here, one optimizes the queueing time of non-
interactive traffic while satisfying a constraint on the average
end-to-end delay of interactive traffic. For these problems, [21]
considered a case where service rate costs and penalty costs of
delay are actually incurred in discrete time periods and it is de-
sired tominimize the discounted service rate cost with constraints
on the discounted delay cost. Facility maintenance is another type
of problems modeled by constrained MDPs. Examples are find-
ing an optimal maintenance policy for each mile of a network of
highways [11] and a problem in building management [23]. In the
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models for these problems, the total cost is minimized subject to
constraints on quality of facilities.

In this paper we study an infinite-horizon constrained MDP
minimizing a discounted cost criterion with nonstationary prob-
lem data and finite state space. This problem is obtained from a
constrained stationary MDP with finite state space by relaxing the
stationarity assumption on the problem data, which is often vio-
lated in practice. It is less obvious but still well-known that con-
strained nonstationary MDPs with finite state space in turn form a
subclass of constrained MDPs with stationary data and countably
infinite state space. A constrained nonstationary MDP with finite
state space can equivalently be formulated as a countably infinite
linear program (CILP), i.e., a linear program (LP) with a countably
infinite number of variables and constraints [2]. Unlike finite LPs,
CILPs lack a general solutionmethod andmay fail useful theoretical
properties such as duality, which make them hard to analyze [5].
By Bauer’s Maximum Principle [1], there exists an extreme point
optimal solution for finite LPs, and often for CILPs as well. For fi-
nite LPs, a feasible solution is an extreme point if and only if it is
a basic solution. This equivalency translates the geometric concept
of an extreme point to the algebraic object of a basic solution. How-
ever, such an algebraic characterization of extreme points does not
extend to CILPs in general [9]. In related literature, the CILP repre-
sentation of unconstrainednonstationaryMDPs, alongwith duality
results and an algebraic characterization of extreme points, was re-
cently studied in [10]. Based on these, a simplex algorithm for this
CILP was developed and shown to achieve optimality in the limit.
For constrained MDPs, duality results were provided in [2]. Defi-
nition of complementary slackness for constrained MDPs and its
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relation to optimality were established in [16]. In general, a
simplex-type algorithm is expected to navigate through extreme
points, so a complete characterization of extreme points is essen-
tial. In this paper we provide algebraic necessary conditions for
a feasible solution of the CILP formulation of a constrained non-
stationary MDP with finite state space to be an extreme point
of its feasible region. Using those necessary conditions, we also
establish a necessary and sufficient condition for a feasible so-
lution to be an extreme point, which can be checked by con-
sidering a familiar finite dimensional polyhedron. This yields a
complete algebraic characterization of extreme points for CILPs
representing constrained nonstationary MDPs with finite state
space, setting a foundation for developing a simplex-type algo-
rithm for constrained nonstationary MDPs.

Under typical settings for constrained MDPs, there exists a sta-
tionary optimal policy but a deterministic stationary optimal pol-
icy may not exist [8]. Thus, an often pursued goal in literature is to
prove existence of an optimal policy that is as close to deterministic
as possible. In particular, in a problem with K constraints, we are
interested in the existence of a K -randomized optimal policy, i.e., a
policy that uses K ‘‘more’’ actions than a deterministic station-
ary policy (for a more precise definition, see Section 3). It is well-
known that extreme points of LP formulations of unconstrained
MDPs with a finite number of states correspond to deterministic
policies. Now consider a constrained MDP obtained by adding lin-
ear constraints to an unconstrained MDP. Then an extreme point
of the LP formulation of the constrainedMDP is a convex combina-
tion of extreme points of the LP formulation of the unconstrained
MDP, i.e., deterministic policies, and this explains how random-
ization is introduced. For constrained stationary MDPs with finite
state space, there exists a K -randomized optimal policy and it can
be found by obtaining an optimal basic feasible solution of the cor-
responding finite LP formulation [12,14,19]. For constrained MDPs
with a countably infinite number of states, a K -randomized opti-
mal policy is proven to exist for K = 1 using the Lagrangian multi-
plier approach in [21] and for the general case in [7] by studying the
Pareto frontier of the performance set. In this paper, we obtain the
existence of a K -randomized optimal policy for constrained non-
stationary MDPs with finite state space as a byproduct of charac-
terizing extreme points of the CILP formulation.

2. Problem formulation

Consider a dynamic system operating in discrete time periods
on a finite state space. In period n ∈ N = {1, 2, . . .}, the system
is observed in a state s ∈ S and an action a ∈ A is chosen,
where |S| = S and |A| = A are both finite. After multiple kinds
of costs, denoted by cn(s, a) and dkn(s, a) for k = 1, . . . , K , are
incurred, the system makes a transition to be observed in a state
s′ at the beginning of period n + 1 with probability pn(s′|s, a).
This process continues indefinitely. The costs are assumed to be
nonnegative and uniformly bounded, i.e., there exist c and dk for
k = 1, . . . , K such that 0 ≤ cn(s, a) ≤ c , 0 ≤ dkn(s, a) ≤ dk for
n ∈ N, s ∈ S, a ∈ A, and k = 1, . . . , K . The goal is to minimize
the expected discounted ‘‘c-cost’’ satisfying K constraints on the
expected discounted ‘‘dk-costs’’ for k = 1, . . . , K , with a common
discount factor 0 < α < 1. A policy π is a sequence π =

{π1, π2, . . .}, whereπn is a probabilitymeasure overA conditioned
on the whole history of states and actions before period n plus the
current state at the beginning of period n. Given an initial state
distribution β , each policy π induces a probability measure Pπ

β on
which the state process {Sn}∞n=1 and the action process {An}

∞

n=1 are
defined. The corresponding expectation operator is denoted by Eπ

β .
Let

C(β, π) , Eπ
β

 ∞
n=1

αn−1cn(Sn, An)


,

Dk(β, π) , Eπ
β

 ∞
n=1

αn−1dkn(Sn, An)


for k = 1, . . . , K ,

and let Π , {π | Dk(β, π) ≤ Vk for k = 1, . . . , K}. The
optimization problem can then be written as

(Q) min
π∈Π

C(β, π).

In [8] it was shown that an optimal policy for a constrained MDP
may depend on the initial state; more generally, we formulate (Q)
with a fixed initial state distribution β . This problem can be refor-
mulated as a constrained stationary MDP with a countable num-
ber of states by appending the states s ∈ S with time-indices
n ∈ N. For constrained stationary MDPs, it was shown in [2] that,
without loss of optimality, we can restrict our attention to Markov
policies. In the stationary MDP counterpart of constrained non-
stationary MDPs with finite state space, a Markov policy is also
stationary because each period-state pair is visited only once.
Moreover, any stationary policy in the stationaryMDP counterpart
corresponds to a Markov policy in the original constrained nonsta-
tionary MDP with finite state space, and thus, we can restrict our
attention to Markov policies for constrained nonstationary MDPs
with finite state space.

It was proven that (Q) has an equivalent CILP formulation [3,2],
which can be written as:

(P) min f (x) =


n∈N


s∈S


a∈A

αn−1cn(s, a)xn(s, a) (1)

s.t.

a∈A

x1(s, a) = β(s) for s ∈ S (2)
a∈A

xn(s, a) −


s′∈S


a∈A

pn−1(s|s′, a)xn−1(s′, a) = 0

for n ∈ N \ {1}, s ∈ S (3)
n∈N


s∈S


a∈A

αn−1dkn(s, a)xn(s, a) ≤ Vk for k = 1, . . . , K (4)

x ≥ 0. (5)

IfP denotes the feasible region of (P), constraints (2) and (3) imply
that for any x ∈ P ,
s∈S


a∈A

xn(s, a) = 1 for n ∈ N. (6)

From (5) we have 0 ≤ xn(s, a) ≤ 1 for n ∈ N, s ∈ S, a ∈ A.
Because all c- and d-costs are uniformly bounded, the infinite sums
in (1) and (4) exist.

To gain intuition, it is convenient to interpret solutions of (P)
as flows in a directed staged hypernetwork with infinite stages
(cf. [9]). Stage n in the hypernetwork corresponds to period n
of the MDP, and each stage includes S nodes, one for each state
in S. There are A directed hyperarcs emanating from each node,
one for each action in A; thus, a hyperarc (n, s, a) corresponds to
action a in state s in stage n. A hyperarc (in a hypernetwork) can
connect its ‘‘tail’’ node to multiple ‘‘head’’ nodes; here, a hyperarc
(n, s, a) has (n, s) as its tail node, and all nodes (n + 1, s′) such
that pn(s′|s, a) > 0 as its head nodes. If the nodes (1, s) have
supply of β(s) units for s ∈ S, while all other nodes have no supply
or demand, any x satisfying (2), (3) and (5) can be visualized as
a flow in this hypernetwork. Specifically, xn(s, a) is the flow in
the hyperarc (n, s, a), and the flow reaching from node (n, s) to
node (n + 1, s′) through this hyperarc equals pn(s′|s, a)xn(s, a).
Moreover, constraints (2) and (3) ensure flow balance at each
node. We will refer to any x satisfying (2), (3) and (5) as a flow
in the corresponding hypernetwork. This interpretation provides
particularly helpful intuition for proofs in Section 3.2.

For any Markov policy π for the nonstationary MDP with finite
state space, the corresponding flow x can be found as xn(s, a) =

πn(a|s) · Pπ
β (Sn = s) for n ∈ N, s ∈ S, a ∈ A, i.e., xn(s, a) is
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