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a b s t r a c t

We introduce two new formulations for probabilistic constraints based on extended disjunctive
formulations. Their strength results from considering multiple rows of the probabilistic constraints
together. The properties of the first can be used to construct hierarchies of relaxations for probabilistic
constraints, while the second provides computational advantages over other formulations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We consider Mixed Integer Linear Programming (MILP) for-
mulations of joint probabilistic or chance constraints for finitely
distributed random variables. For arbitrary distributions such con-
straints have been extensively studied and havemany applications
(see for example [18,22] and the references within). The discrete
distribution case has been studied in [3,7,11,13,15,21] and used in
applications in [3,4,12,16,20]. Finite distributions also appear nat-
urally in Sample Average Approximations (SAA) of general proba-
bilistic constraints [14].

We concentrate on the probabilistically constrained set Q :=

{x ∈ Rd
: P


x ≥ ξ


≥ 1 − δ} where δ ∈ (0, 1) and ξ is a d-

dimensional random vector with finite support {ξ 1, . . . , ξ S
} ⊂ Rd

+

andwithP(ξ = ξ s) = 1/S for each s ∈ {1, . . . , S}. A standardMILP
formulation for Q was introduced in [19] and is given by

S
s=1

zs ≤ k, (1a)

zs ∈ {0, 1} ∀s ∈ {1, . . . , S} (1b)

x ≥ (1 − zs)ξ s
∀s ∈ {1, . . . , S} (1c)

where k := ⌊δS⌋. This formulation uses binary variables z ∈ {0, 1}S
such that zs = 1 if x ≱ ξ s and restricts the number of violated
x ≥ ξ s inequalities through the cardinality constraint (1a). The
Linear Programming (LP) relaxation of formulation (1) can be very
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weak, so valid inequalities for it have been developed in [11,15].
In addition, a strengthened version of (1) was introduced in [15].
Because of the use of big-M type constraints based on lower bounds
on x we denote the original and strengthened versions of (1) as
Big-M and Strong Big-M formulations respectively.

Alternative MILP formulations for Q can be constructed using
standard disjunctive programming arguments. Unfortunately, the
sizes of the resulting formulations are exponential in S for fixed δ.
Although this size can be significantly reduced by using so-called
(1 − δ)-efficient points [3,7,18,21], the resulting sizes usually
remain exponential (e.g. see Section 5.3 of [24] for an example in
which the reduced formulation size is exponential in d). Hence, it
is not practical to use these disjunctive formulations directly and
they aremostly used as a base for specialized algorithms [3,6–8] or
to construct valid inequalities [19,21,23].

Our main contribution is to introduce two new MILP formu-
lations for Q . The first formulation can be used to construct a
hierarchy of relaxations for Q and the second one provides a com-
putational advantage over other formulations. In addition, both
formulations can consider more than one row of (1c) at a time. To
the best of our knowledge, no other existing formulation can do
this without assuming a special structure for {ξ 1, . . . , ξ S

}.
The rest of this paper is organized as follows. In Section 2 we

introduce the new formulations and their theoretical properties
and in Section 3 we present results of computational experiments
that illustrate the strength and effectiveness of existing and new
formulations.

2. New formulations

Our new formulations rely on the following disjunctive
characterization of the feasible region of (1)when considering only
a subset D of the rows of (1c).

0167-6377/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2012.01.007

http://dx.doi.org/10.1016/j.orl.2012.01.007
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
mailto:jvielma@pitt.edu
mailto:sahmed@isye.gatech.edu
mailto:gnemhaus@isye.gatech.edu
http://dx.doi.org/10.1016/j.orl.2012.01.007


154 J.P. Vielma et al. / Operations Research Letters 40 (2012) 153–158

For D ⊂ {1, . . . , d} let xD = (xi)i∈D, ξ
s
D = (ξ s

i )i∈D and define

Q D
:=


(x, z) ∈ RD

× {0, 1}S :
S

s=1 zs ≤ k, xD ≥ (1 − zs)

ξ s
D ∀s ∈ {1, . . . , S}


. Additionally for D ⊂ {1, . . . , d} and g ∈

RD let vD(g) = {s ∈ {1, . . . , S} : g ≱ ξ s
D} be the set of

scenarios for which g violates constraint g ≥ ξ s
D and define

Q D
g :=


(x, z) ∈ RD

× {0, 1}S : xD ≥ g, zs = 1 ∀s ∈ vD(g),
s∉vD(g) zs ≤ (k − |vD(g)|)


. We then have the following two

lemmas whose proofs are straightforward.

Proposition 1. Let D ⊂ 2{1,...,d} be such that


D∈D D =

{1, . . . , d}, then (x, z) satisfies (1) if and only if (xD, z) ∈ Q D for
all D ∈ D .

Proposition 2. Let GD :=

g ∈


j∈D{ξ

s
j }

S
s=1 : |vD(g)| ≤ k


where

denotes the Cartesian product. Then Q D
=


g∈GD

Q D
g .

Using these two propositions we can use standard MILP
formulations for disjunctive constraints to obtain reformulations of
(1). However, before we give them, we refine the characterization
of Q D in Proposition 2 by reducing the number of points in GD as
follows.

Proposition 3. Let G̃D :=
k

l=0


g ∈


j∈D{ξ

s
j }

S
s=1 : |vD(g)| ≤ l

and |vD(g − q)| > l ∀q ∈ RD
+

\ {0}.

then

Q D
=


g∈G̃D

Q D
g . (2)

Proof. For the first inclusion let (x0, z0) ∈ Q D and for each j ∈ D let
sj := argmaxSs=1{ξ

s
j : x0j ≥ ξ s

j }. Let g ∈ RD be such that gj := ξ
sj
j

for each j. Then g ∈ G̃D and (x0, z0) ∈ Q D
g . The reverse inclusion is

direct. �

When D is a singleton GD = G̃D, but when |D| > 1 G̃D can
be significantly smaller that GD. However, G̃D is usually a strict
superset of the (1 − δ)-efficient points associated with Q D. These
facts are illustrated in the following example.

Example 1. Let d = 2, S = 4, ξ 1
= (0, 20), ξ 2

= (10, 10), ξ 3
=

(20, 0), ξ 4
= (30, 30) and k = 2. For these data the pro-

jection onto the x space of (1) is given by the shaded region in
Fig. 1. This depicts the choice of D = {1, 2} for which ξ i

=

ξ i
{1,2} for i ∈ {1, . . . , 4}. The figure also shows the projections
onto the x1 and x2 variables which correspond to the choices of
D = {1} and D = {2} respectively. In these two last cases
we can see that GD = G̃D (points surrounded by triangles for
D = {1} and by squares for D = {2}). For instance, for D =

{2} we have that
v{2}


ξ 2
{2}

 = 2 and
v{2}


ξ 2
{2} + λw

 ≥ 3
for any λ > 0. In contrast, for D = {1, 2} we have
G̃D = {(10, 20), (20, 10), (20, 20), (30, 30)} (points surrounded
by circles) while GD = {(10, 20), (20, 10), (20, 20), (30, 30),
(10, 30), (20, 30), (30, 10), (30, 20)} (points surrounded by cir-
cles and diamonds). In particular, (20, 20) is in G̃D becausev{1,2} ((20, 20))

 = 1 and
v{1,2} ((20, 20) − q)

 ≥ 2 for any
q ∈ R2

+
(such as for q = −u and q = −v), while (30, 10) is not in

G̃D because
v{1,2} ((30, 10))

 = 2, but
v{1,2} ((30, 10) + λh)

 = 2
for any sufficiently small λ > 0. Finally, note that G̃D strictly
contains the set of (1 − δ)-efficient points which is given by
{(10, 20), (20, 10), (20, 20)} (points surrounded by hexagons).

Fig. 1. Feasible region of Example 1.

Using Propositions 1 and 3 we can construct the following two
families of formulations for Q .

Proposition 4. Let D ⊂ 2{1,...,d} be such that


D∈D D =

{1, . . . , d}. Then

xj ≥


g∈G̃D

yDg gj ∀j ∈ D, D ∈ D (3a)


g∈G̃D

yDg = 1 ∀D ∈ D (3b)

yDg ∈ {0, 1} ∀g ∈ G̃D, D ∈ D (3c)

0 ≤ zD,g
s ≤ yDg ∀g ∈ G̃D, s ∈ {1, . . . , S}, D ∈ D (3d)

zD,g
s ≥ yDg ∀g ∈ G̃D, s ∈ vD(g), D ∈ D (3e)
s∉vD(g)

zD,g
s ≤ yDg (k − |vD(g)|) ∀g ∈ G̃D, D ∈ D (3f)

zs =


g∈G̃D

zD,g
s ∀s ∈ {1, . . . , S}, D ∈ D (3g)

zs ∈ {0, 1} ∀s ∈ {1, . . . , S} (3h)

is a valid formulation of Q . A smaller valid formulation is given by

xj ≥


g∈G̃D

yDg gj ∀j ∈ D, D ∈ D (4a)


g∈G̃D

yDg = 1 ∀D ∈ D (4b)

yDg ∈ {0, 1} ∀g ∈ G̃D, D ∈ D (4c)

S
s=1

zs ≤ k (4d)

zs ∈ {0, 1} ∀s ∈ {1, . . . , S} (4e)

zs ≥


g:s∈vD(g)

yDg ∀s ∈ {1, . . . , S}, D ∈ D. (4f)

Proof. For D = {D} we have that (3) with (3a) replaced by

xD,g
j ≥ yDg gj, xj =


g∈G̃D

xD,g
j ∀g ∈ G̃D, j ∈ D, D ∈ D (5)
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